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can be interpreted as a scattering effect because of the discontinuity in the
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as a field generated by reemission of some of the energy that is bent into the
the diffractor near the edge. This term is equal to half the refelected
amplitude at the shadow boundary of the refleocted wave and to half the amplitudé
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describes the trivial condition of continuity in the transition from the
insonnified region to the shadowed region. On the side of the incident wave,
the amplitude is very nearly equal to the excitation as though due to the
reflection factor that would obtain if the angle of exit (of diffresction)

were produced by reflecting a vray oun the wedge surface under the appropriate
angle of incidence. As a consequence, this second term vanisheas at two

anglas (th= Brewster angles) that are equidistant from the normal of the
surface. In this report, the diffraction is investipated of a great number

of straight edges and wedges whose surfaces are covered with various impedances
The exact solutions are compared with approximations. lowever, even the

exact solution can be easily derived because of a simple and very good
approximation to the Malyuzhinets functions.
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ACOUSTICAL SCATTERING FROM THE IMPEDANCE COVERED STRAIGHT EDGE

AND WEDGE; THE EXACT THEORY

- ABSTRACT
The analytic extension of the Fourier integral from the half space

to wedge-like spaces leads to Sommerfeld type integrals. Theorems derived
by Malyuzhinets in conjunction with new methods of handling Fourier Laplace
integrals make it possible to apply the boundary conditions to the integrand
to determine the integrand function ard thus to determine the solution
from the boundary conditions. The resulfing Malyuzhinets functions can
then be closely approximated by simple expressions for real and complex
arguments. The diffracted field then depends on the shadow boundary and,
in contrast to the classical theory, also on the orientation of the

- diffracting surface. The diffraction field is described by the sum of
two terms, One term can be interpreted as a scattering effect because
of the discontinuity in the medium caused by the impedance surfaces; the
second could be interpreted as a field generated by reemission of some
of the energy that is bent into the diffractor near the edge. This term
is equal to half the reflected amplitude at the shaaow boundary of the
reflected wave and to hzlf the amplitude of the transmitted wave at the

shadovi-boundary of the transmitic
of continuity in the transition from the insonrified region to the shadowed
t region. On the side of the incident wave, the amplitude ia very ncarly

‘ equal to the excitation ag though due to the reflection factor that would
obtain if the angle of exit (of diffraction) were produced by reflecting

a ray on the wedge surface under the appropriate angle of incidence. As

a consequence. this second term vanishes =t two angles (tlLc¢ Brewster

angles) that are equidistant from the normal of the surface. In this
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report, the diffraction is investigated of a great number of straight
edges and vedges whose surfaces are covered with various impedances.

The exact solutions are compared with approximations, However, even

the exact solution can be easily derived because of g simple and war:-

good approximation to the Malyuzhinets functions. .
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- I. INTRODUCTICN
- The Fourier Integral for the Half Space and Its Analytic Extension to Wedge E 4
Spaces H

In dealing with propagation problems, we solved the wave equation in a
suitable coordinate system. PRecause tlie wave equation is of second order,
we obtain two independent solutions. DBoundary conditions are usually prescribed
1

he coordinate surfaces and at infinity. One solution freguently has. Lo be :

m

ade o
auv L

Jiscarded because it 12presents energy sources at infinity. In the case of a .
H
straight edge (semi infinite plane),boundary conditions need to be prescribed é g
i
]

at both surfaces, i.e. the solution must be discontinuous at the half plane,

T T N T T R S T N T TS R TS L O

The coordinate surface is no longer a plane but is a degenerate cylindrical
paraboloid. zj

The standard Fourier method is not applicable to wedge spaces nor to

TSR TR A T

the straight edge. Frourier integrals converge only in the semi sbpace. i 4

The Fourier integral can be bullt up from plane two-dimensional waves:

, . ik
. =5 od (Wt y) - Ju (1.1) ]

vhere SO is an amplitude constant, k is the wave number, and

SRS - NS
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The quantity w can be interpreted as the forced wave number in the x

s S

direction at the surface y = 0; the quantity k 1is the wave number of the

e a—ri——

wave that propagates in the medium as a consequence of the vibration forced

with the wave mumber w along the plane y = 0., We may now prescribe the

ettt i v

vibration amplitude at y = Q0 by a Fouricr integral and extend the integral

to the y-gpace by including the ky part in the exponent. Thus we have

|
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(1.3)

where So(w) is the spectral amplitude function. The integral then represents
a solution of the wave equation provided that it is absolutely convergent,
This is the case in the upper half plane if the exponent has a negative real
part for y > O, and if So(w) is bounded in the interval of integration,

The convergence properties of the integrand are not affected by a
coordinate cransformation. However, it will be of advantage to introduce

eylindrical coordinates (see Fig. 1.1):

x=rsing , y=rcos9, w=ksinao . (1.4)

Regardless of the sign of the square root in the integrand of Eg. (3).

the transformztion introduces onc: more an awmbiginity of the sign

( % 1 - zin“a= + cos «). The exponent in the integrand thus becomes

jkr (sin o sin ¢ + cos ¢ cos @) = + jkr cos (9 ¥ a) (1.5)
The limits are given by

w/k = sin ¢ = sin (q_+ jo,) = sin @_ cosh @, + j cos «_ sinh o, = + o ,
r 1 r 1 r 1 ol

(1.6)

We find that cos o = 0, «a

it
L
3
“w
Q
]
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for w = @ , and that
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- We have a choice of two basically different wvalues for each limit. i
It does not make much difference which sign we select for the square root;

convergence can be obtained for each sign by selecting properly the new

RPOP U ST ST

limits of integration. 1If we select the positive sign for the square roct,

the integral will converge if

Ci it g B b a1 o

kr sin {p - ar) sinh oy (1.7)
is positive, This means that we must have
- < -
0 < o, <, Qe (1.8)
<9 - <0, s -ow (1.9)
For Qi—é w we obbain for the limit-n/E of ¢:

3n

0<-mx/2 - @ <m or - Z=<aq <- /2 , (1.10)
and for the limit =x/2 of ¢:
, T
0<n/2 -0 < or -z<a < /2 (1.11)
1t . - / _ - 7 .
Thus o} =-z- ¢ When @ 1S negative (¢—0) and ur = - 5 + 2 when § is

positive, or we may assume that Q, = - % > and that ¢ is restricted to the
interval - (% ~e) <9< (% - ¢). Similarly we find that o, =+ n/2 for

Q- = oo, The transformed integral is thus given by

- —g— + Jjoo ;
P(r,p) = ‘//@ eIET cos (e - a) So(k sin ) k cos o da (1.12) {
',E - Jm
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If we assume that the path of integration passes from + Jeo . = to - 3
- o

and from there along to - n/2 and then straight up to - % + Jm, then the
contribution of the path along the real axis represents the field of waves

in the direction ¢ +thalt propagates at an angle - % <a< % with respect

to the real axis. The contribution of the vertical parts of the path
represents the field of waves in the direction ¢ +that propagates along

the axis a = 0 and decays strongly with distance., We have no freedom in the
path of integration if the integral is to converge for all values of ¢ that
correspond to point. in the upper half plane. Thus changing the variable

did not change anything basically.

Equations (1.1) and (1.3) derive the field from the boundary ~ondition
at y = 0. This boundary condition is equivalent to a field that is generated
by a source distribution somewhere between y = 0O and y = - ». In a wedge
space or in cuge of a straight edge, we need solutions that converge also
for y < 0 and that are discontinuocus at the surfaces of the straight edge
or wedge. This requirement excludes solutions in Cartesian coordinates.

Such solutions have the period 2n and would lead to the same wvalues at the
two gsurfaces of the straight edge. If we want to perform an anslysis in
terms of simple harmonic functions, .hey must have a period that differs
from 2n, Ve are therefore certain that So(a) # So(a + 2%).

To introduce the preceding condition explicitly into the solution,

we write the integrand in the following form:

S{a+ n) - S(a - %) = 2% So(k sin o) k¥ vos a . (1.13)

S(@ - a) can then be interpreted as the radiation from the front, S(a + =)
from the back {see Fig. 1.2). Front and bhack are scparated by the semi

infinite plane, each point thcrefore contributes because it radiates into

T
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the front space and because it aiso radiates intc the shadow space. This
particular geomebsoy seems to be impressed on the whole space. The physical
space is defined he.s as the space - n < ¢ < n (Sonmerfeld). All other
angles (;«]| > n) represent a purely mathemstical space {the Riemann space
in the Sommerield theor. . The reflected fields can then be interpreted as
being generated b, niirror image sources that are hidden in the Rieman space;
this agrees wiin the assumption of hawing only one source in the physical
space,

The scintion then is represented by the expression

1 /1 jkr cos -
57 [ e’ ©® - Dise+ 1) - s(a - 1)]da
L .
- 2- Joo
Sx .
e - e
= et SJAL cus\@ - ) 1 ik a
3 e . —_— =JXr CcQS -
2n qu : S(a) + 5= e™d @ - @3 (0)an
it .
5 + oo i g - 3w (l'll;)
wnere we have introduced the new variable %' = g+ n , 0" = ¢ - x in the two

parts of the integral, written « again for &' and ", and changed the
limits of integratior correspondingly. <The new paths of integration are
shown in fig. 1.%a. We now assume that S(a) is regular in the range of
intecration except for a number of discrete poles at finite distance from
the real axis. We combine the two halves of the path in each half plane

into a loop, gebting the path y{¢) as shown in Fig. 1.3b. Poles al infinite
distances from the real axis can be accountea Tor by considering their

residues, We thus obtain:

1 / -jkrco Y - . .
P(r0) = 5 gmJkreos{a - @) s(a)da (1.15)
7()
b d R g o . s " Fl P . S eerast ik, AN IR
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It is inconvenient tc introduce limits that depend on ¢, By changing

variables

(0 - ) = =1, u=a=-o

a=u+g, da = du (1.16)

and writing <« again for wu the integral trausforms into

/ﬂ e-jkr cos a
(V%

r

S{a + ¢) du (1.17)

we are Ifree to move the path of integration within the regions of convergence

of the integrand, ©Since the convergence of the integrand does not depend on ¢ ,
the path T 1is the same for all values of - ¢ <@ < ¢ , We have assumed
implicity that S(a + @) vanishes sufficiently strong at infinity so that we

are allowed to start the path at + jo and to proceed in any direction as

long as we stay in the convergence range of the integrand, For positive Oﬁ »

these limits are now given by

kr sin @ sinh o, >0, 0< o, <, (1.18)

if o > 0 and by

- 2n < a, < -7, if Q@ <0 .

An analogous resalt is obtained fi.r the negative half plane. The path T’
is as shown in figure 1.4. Il extends along the real axis from at least
- n to +«, It ig apparent that the function S{a) must be analytic for

al least the range - n < (o& +9) < for @, > c = const.,




e

or

- -~ (n+ ) < o <m+ 0

4 (i.e. except for the poles near the real axis. We thus have arrived at a
generalized Fourier integral which will converge in wedge-like spaces. We
shall refer to this integral as the loop integral in the following.

E.
é
4
4
1
]
L

e s
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(1.19)
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1I. PROPERTIES OF THE LOOP INTEGRAL

(a) Derivative with Respect to o

The derivation of the loop integral is best performed in its form (1.1k).

Since a small displacement of the path y(¢) into 7(p + dp) within the con-
vergence range of the integral does not change its value, differantiation
can be confined to that of the integrand. Thus

Ay emdkr cos (¢ - @)

o1
= ! - s{a)da
S T U P (@)

Jer L//-/e_Jkr €98 % sina oo + ¢)da

T

where we have replaced ¢ - a by - o' and written o for o' again.

(b) Condition for Zero Value of the Integral

The most important theorem that applies to the loop integrals is

Malyuvzhinet's theorem I, A loop integral. iz zero

‘_/]e_jkr GOS8 Z (%72 g

r

if the function £{z) is even, i.e. if

where

(2,1)

(2.2)

(2.4%)

.
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- To prove this theorem, the path of integration is deformed into the two
lines infinitely close to v = -y and u = +n (see Fig. 1.4) and integration is

1 performed either to the left or to the right of these lines so that the

[l

exponent has a negative real part. Since cos (z) = 2oz (-z) and s(z) = s{-z),

TN AT

the integrands along the line 0 > v > -w, u ==~ and u=7n,.0 <V < are
equal., Bul since the directions of the two parts of the path are opposile,
their contributions cancel.

If the function s(z) increases at a high rate towards infinity, condition

L (5) has to be replaced by a more complex condition.”

(¢) Inversion Formula, for thc Wedge Integral for ¢ = const.

Malyuzhinets also derived an inversion formula for the wedge integral,

It
2 T 7 =\
As -ms =0 (-S> <argm < ) (2.5)
2 - -2

o 1 mr cos ¢
! R y
b s(r) 53 e S{a)de (2.6)
K H
i ; 7
: ' then

(-4}
s{u) = - I sin aL//) 5(r) o
= -7 2
0

fol
~~
b
-3
e

*

The derivation is straightforward and given in the refercnce: G, D. Malyuzhinets,
A _ Invercion Formula for ithe Sommerfeld Integral, Mathcmatical 3eviet Physics
Doklady 3, 1958, 52-51,
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ITT, BOUNDARY CONDITIONS

The function $(a) is determined from the boundary conditions for the
sound pressure at the surfaces ¢ = + &, For a wedge with pressure release

surfaces

B(r,) =fe5krc°s “S(a+0)da=0 (3.1)
T

To satisfy this relation, S{u -+ %) must be an even function of @. Thus

S(a+ 0) = 8(-a + 0)

S(a - ¢) =8(~cx - ¢) (3.2)

Zf we replace o by - ¢ in the first and by o + ¢ in the second equation,

the 1cft hand sides become equal and

S(a) = 8{-a - 20) = S(-a + 27) (5.3)

This result shows that the solution has the period W@, As pointed out in
Section I, Egualion 1.19, the solution must be analytic in the band

[Re(a)] < v+ 7 except for a pole for ¢ = Pos vhose conlribution represents
the incident wave, The simplest function that has a period 4P, has a pole

at w= U Such a furnction ig

5 () = —— (3.4)
sin =% (ct - @0)




o mr— s =
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11
But this function does not satisfy condition (3.3) becausc

.t N ¢
S(-0 + 20) = 51n[§$ (~a + 20 - @O)] = Sln[gz (= - @O)+ n] = sin == (a + mo) # 8(w)

20
(3.5)

But the precduct of two functions of the type S(a), one with + P the other
with - N in the argument will satisfy our requirement because of the symmetry

which is thus generated, We are thus led to assume that

1
S (a) = —
: N N (3.6)
—— - D —_—
sin - (c qo) sin 7 (a + mo)
S(a) still has a pole at o = - ¢3 but @ = - ¢ represents an incident
wave in the physical space (- & Lo <L ®). But there is no second incident
wave, and this pole must be cancelled by multiplying by a periodic
non-trivial factor, A, that has such a pole, The factor
RO .o -
A =sin oz o+ sin oz b (3.7)

fulfills all requirements. It carncels the pole and satisfies the conditions.

Hence we have

.o T
B(sin o= « + sin —— @ _)
5(u) = ——=2t 2o (3.8)
sin 56-(& + @O) sin = (a0 - wo)
The residuc of S(a) at o = ¢, is unitly if
= X o U z
B = =5 ©0% zy 9 (3.9)
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We thus arrive at the solution

cos .o [sin _T_ o+ sin _7_ o ] .
m 20 © 20 2¢ © ;
S(a) = =%
sin 2- (a+ @) sin _*_ (a - @C) :
rAY 290 ©
cos (X ) 2 sin T (ax+¢ )cos T (a=-9) . 3
n (2<1> © L9 © Lo ° :
Y 5
L sin L. (a + @O) cos _T_ (a+ @o) sin I (a - ¢_) cos T (a- @o) P
4o Lo 4o 4o ;
s — !
L COS zp— @
)i(z) . e 17t - s - : 4
sin 2. (a - ¢ _} cos (a+9.)
Lo ( © o © i :
cos L (@ - ) cos T (a+q)+sin T (a- o) sin T (a+ o) :
o x Lo © Lo I o .
b !

sin X (o - wo) cos . (o + 9,)

Lo o ' |

-~
(N
[
o

~—

A irts  LSaa Al et

= 2 [ cot X (a-¢, )+ tan 2 (a+ 9 )]

——

i) Lo 4¢

For ithe stationary phase integration, S(x) is best written in the form

7
cos =—
2% {o

i 4

1t =
s(a) = 55 - ~ (3.11)
sin ?‘i;  ~ B81ln 'é;b' (J)O

s

vwhich is eagily deduced from the third form on the right. The cosine factor
in the numerator is a consequence of the pressure releage boundary, This
factor is zero for mo =0 . Wc thus have obtained the well known Sommerfcld

integrand for the pressure release wedge; in constrast to Sommerfeld's

heuristi . procedure the method above is hased only orn mathematical deduction.

. The solution for the rigid wedge can be derived in a very similar manner,

o A e s, 7 - A - " "“"'

. e e o .
- o g T ey - - [T AP X 57 JURAE T TR
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Malyuzhinets has derived & new kind of Fourier-Laplace analysis which
can also be used to derive the function S(a). But in case of the Sommer~
feld wedge, the Malyuzhinets Method is impractical because of the complexity
of the integrals that result and the preceding method is preferable.
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Iv. THE FOURIER LAPLACE ANALYSIS OF MALYUZHINETS

Functions that increase expenentially towards + « or approach finite
values at + « can be represented by Laplace integrals by separating them
into two parts, one part representing the function in the interval O to o,
the other zero part representing the function in the interval - « to O.
This procedure leads to two different spectral functions. To compute
inverse transform because of their different regions of convergence, each
of these two functions has to be integrated over a different path. The
analysis that has been introduced by Malyuzhinets is based on a single
spectral function F(w) for the whole range of integration. However, the
representation of this function depends on whether the line integral is
at the left or righf of the imaginary axis. This simplification becomes
possible because the fields we are infterested in either approach finite
valuces or vanish at 1 w. The lnlegrals Lhai occur in the various computa-
tions usually contain sines, cosines, ftangents, and groups of functions
& of a variable =z +that are regular in strips, a < Re (z) < b, For instance,
: 1/cos z is regular for =-m/2 < Re (z) < %-. We therefore limit our study

to functions which exponentially approach constant values for Im(z)— 4 «
vhen 2 < Re 2 < b. We thus have by definition

-'/\Im(Z)] - f(Jm) 4 O(:LGJ.?\Z\., Im(z) - joo (h’.l) :

‘ f(Z)wf- f(Jm) 4+ 0 {e
‘ £(2) = (=g} + 0 (P IE) ) L op(ga) 40 (79 ) Im(a)= ege (h.2)

%, 1 positive constants

- L G M E e s rnsn Anr e am s e o aems




The anslysis we are going to develop could be extended to exponentislly
increasing functions as \Im(z)i —> », However, we would then loose the
effect of the constants £(Je) and f£(-je). Thal wave fields differ at +
infinity is easily illustrated for a half plane as diffractor, helf the

incident energy will be reflected back at the semi infinite plane. Bul at ]

great distances from the plane, the shadow space will be filled up with
energy by diffraction and the amplitude will approach l/WJE_times that of
the incident wave. Thus the wave amplitude will be So at + «, and So/\/§~
at - w,

The function f(z) - f(~jw) can be represented by a two-sided Laplace
integral because it vanishes exponentially for Im(z)-f;- w, and approaches
a constant for z = + jo. To derive this integral, let us use the notation

of Malyuzhinets and prove that the integral

Jeeo
: F*(w) S L//) [f(z) - £(=jw)] eIV dz 3 O<BRew<uyu (4.3)
g V 2n 500

converges for O < Re(w) < » , and that the integral

JOO
Fi%(w) — /?[f(z) - £(5=)] a2 , A< Re(w) <0 (4.1)
-\'/ P ‘./-;1'00

converges for -A < Re(w) < 0. To perform this proof, we divide the integral

(4.5) into the two integrals

0
) Tj%_ L/O ez - f(_jm)]GJWZdZ.+“VZ""L//7 (£(z) - £(=3»)] "%z

-'joo
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The first integral exists because f(z) is analytic and f£(z) - f(-j«) vanishes
at its lower limit. If we replace f(z) by Egq. (k.1) the first integral

reduces to

o o]
[ 1) - 2gm) + 0 (@ 1 Maa < Mo (W a L ae)
L:‘jm —joo .

This integral converges, provided Re(w) B < 0, In the second integral we

write correspondingly
Joo
- ~
/' E(Ge) = £(=do) + 0 (e
LJ/

o}

P2y] oIV, (4. 7)

This integral converges if Re w > 0 and Re(w) + A > 0. The three conditions

then lead to
O<Re w<p (4.8)

The preceding formulae can be inverted as is proved by methods well

knovmn in Fourier analysis

Jeo
£lz) - P} = J g F**(\I) e VA aw (4 9)
Vi . ’ '
provided -~ X < Re(w) < O and
Joo A
. 7 . (4.10)
£() - £(-gu) = = J’ F¥(w) ™" qu
an Z 500

provided O < Re(w) <11 , If we substract tlhe twou equations from each other

1
!
!
i

Y
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. _jco+€ Joo—e
. - .x' - j pA
(£(Je) - §(-3)]= _J%;: [Ljfj F(w)e W2y -L/f7 Fo(w)e™ % qu] (4.11)
~Jootz . =Jo=g :

where we have replaced the condition Re(w) > - A by shifting the path of
integration by € to the left and correspondirgly the condition Re(w) <p

by shifting it by e to the right where € > 0 car. .. as small as we please,
Since £(z) is analytic in the strip a < Re(z) < b, F*(w) and F (w) cannot
have any singularities other than for Re(w) = 0, and cannct have singularities
for Im(w) # O since the integrand is analytic in the strip and finite at
infinity; the only admissible singularity is a simple pcle at w = O since

F(w) is single valued. We have for w # O, by applying Eq. (k.3),

Jy -
) Jwz . W eIy
F(w) < lim M e dz = lim i = finite (4.12)
y._) o0 . y-?oo
~Jy

The right hand side of Eq. (4.11) reduces to the integral around the pole
at w = 0 and F(w) becomes infinite for w = O, The residue of F(w) at this

pole is given by

= Ver [£(§0) - £(=j=)]

residue » 2nj = 3

* F
for all values of z. This shows Lthat F = F A

A MOTre rigorous prooc
be derived with the aid of the Cauchy Chilbert transform representation of
tke Fourier transform.

Ve can still improve the symmetry of the reverse transform by adding

Eqs. (2.9) and (4.10) and dividing by two:

Jeo-e
j *% ~Jve
£(z) = £ [ £(3) + £(-jw)] + — [/ F ¥ w)e IV au
- z ' 2Ven e
l \
Joote ) (4.14)
‘ N >
+ F (w)e T2 4w)

-Jote

[ P




where F*(w) and F**(w) are given by Egs. (%.3) and (4.4), We can drop
the star and the double star. TF(w) is an analytic function whick in the
band - N < Re(w) < O can be represented by the integral F*(w) and in the
band 9 < Re(w) < p by the integral F*(w). Equation (4.1k) represents a
very convenient and also the most general form of the solution. But for
the final evaluation, the two integrals have to be combined and written in 'é
a standard form. This can be done, for instance, by shifting the path of

integration of the second integral to the left, and adding the contribution

of the residue at w = 0 to the result (see Fig. k.1):

-e+Joo
£(2) = § [£(G=) + £(-3o)] + [F(e) + T ()] e " %au
2 V¥an
_e-jm
+§2:Hr§Lt . residue at (v = 0) , (h.15)

or by changing w into - w in the second integral of Eq. (4.,14):

. ~€+jo .

1 ; : J * -JWz % Jwz '

£ == [f(§e) + £(-jo)] + —== [F*(w)e dw + P (~w)e' " "Jdw  (4.16) :
(z) = 3 [£(3=) (-3 zﬁ‘_{;w W |

Frequently, integration can be further simplified by discarding the odd parts

o

of the integrals but retaining possible coniributions at the pole w = 0.
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V. THE IMPEDANCE WEDGE

; (a) The Solution
In this section, wedges will be investigated vhose surfaces are
covered by acoustic impedances. The reflection factor for a plane incident |

wave at a plane surface of acoustic impedance z, is giver by

o . o . S -
cos © 1 cos @ 5 _cos @ - cos T

=l
Il

pc  cos @ + cos @ (5.1)

cos p *+ 1 cos @ + -

BimtR [

where @ 1s the angle of incidence with the normal to the surface. For

the angle given by

1 b PRy
cos 0 =55 = ¥ = cos (§ - 9) =sind , (5.2)

the reflection is zero. The angle 9 = n/2 = 0 is defined as the grazing
acoustic Brewster angle, 0 as the Brewster angle with the normal to the
surface, Thig definition applied formally also for complex impedarnces,

In deriving the acoustic cguations for wedges, it is of considerable advantage
to measure angles from the cenlral wedge plape {see Fig. 1.1), The wedge
surfaccs then are given by © = + & . The boundary conditions

that have to be satisfied are: (1) For the upper surface, where 9 = ¢,

2=z, 9= 9.:

B ~ iR R foys) s -jaty | . -
vcp z, e (o (time factor e ) ; (5.3)

or if we introduce the Brewster angle

N L I L P S ¥




JK p 8in ﬁ+ =

For the .ower surface where ¢ = - ¢, z = 2z_; 4 = 9_

jkp sind

20
NN (5.)
Jois}
= -11: ($)®=_¢ . (55)

If we apply these boundary conditions to the integral solution and using

Eqs., (2.1) and (2.3), the following equations result:

(sin « + sin 6+) S (a+ ¢)

(sin ¢+ sin 9_) & (a - ¢)

-(sina-ein 3 )5 ( ~a+¢) =0

- (sina~sin d_) 8 (-a - 0®) =0 {5.6)

It is apparent from the Kirchoff theory that the impedance cover of the

faces of the wedge will not displace the shadow boundary of the wedge surfaces

significantly and it is obvious that it cannot effect the pole nor its residue

that represents the incident wave,

tfor form

S(a) =

where

If, therefore, we write the sclution in

a(a) yla) (5.7)

o(w) is the Sommerfeld form of the integrand of the loop integral
for a presgsurc release wedge,

Y{x) is a function that describes the effect of the impedance cover,

W(@O) is a kind of normalizing factor,

then o(@) will contain all the poorly behaving parts of the solution (poles

deseribing incident and reflected waves) and

(o)
'} "PO

will be a well behaving

function with no pcles within the range of integration (but it may have poles

an e | Tt .mA

2 4.

i bt wiboning b ek, S S k.

Lk kS e

e

el

e
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at the extremes a = + ). We shall sce in section ( XII) that the solution
of the impedance wedge must be based on the pressure release wedge and not
on the rigid wedge. The impedance wedge backscatiters at all angles. The
rigid straight edge docs not backscatter when the wave impinges parallel

to the plane of the straight edge so that P, = 0. The resultant solution
would, therefore, break down for ¢, =0 if o(a) were the integrand for the
rigid wedge. If we enter Eq.(5.7)into the two boundary equations above,

we obtain two equations of the form of Eq.(5.6)for the function v(a), S(a)
being replaced by ¥(a). The o(a) part cancels out left and right because
o) satisfies the conditions (3.2) for a pressure release wedge. To solve
equation (5.6), we take the logarithm left and right and differentiate.

Because the logarithm of (~1) is jn, and its derivative is zero, we obtain:

1

cos QO vy + ) cos o ¥
sin o + sin O y(a+ &) " sina - sin 9 v (

(~cx + 3
- + 0)

¢
4+

A similar equation results with 9, replaced by 8  and ¢ replaced by - ¢.

Hext we introduce the new function:

o+ ) ‘
y‘%‘_”aw = f{a +9) (5-9)

The Malyuzhinets transform of f(a + ®) and (-« 4 &) then are given by

(Eq. 4.3 and b.h):

=4yl
ME(a 4 o) = e 977 Plu)

vl
ME(ex + @) = e2" " F(-w) (5

(5.8)
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vhere mf(w) = F(w) is the Mslyuzhinets transform of f(0) =nd the letter M

means symbolically Malyuzhinets transform of r(a)., Let

Cos cos a _ _2s8sindcos a_ 4 sin dcos «

!3‘((1 = -
g(a) sin ¢ + 8in 8  sin & ~ sin 3 cos 2C - cos 249

. 2 . 2o
sin o ~ sin 9

2 sin 9§ cos a _ 1 _ 1 -
- sin{a + 9) sin (@ - 3)  sin (@ + ©) ~ sin (o - 9) (5.11)

where 9 1is the grazing Brewster angle and @ the Brewster angle with
respect to the normal to the surface. We have omitted the bars zbove the
symbols ¥ and € that mark them as complex quantities., The transformed

equations (5.8) then are

g+(w) + eIV Flw) + 37" F(-w) = 0
vl , -3wl ’ _
g_(v) + el Flu) + eI F(-w) =0 (5.12)

vhere g+(w), g_(w) represent g(w) = Mg(a) with 9 replaced by 3, 4

respectively. Jlimination of F(-w) leads to:

8. (w) e I _ g_(w) Lk

Flw) = 2J oin zZwv (5.13)

Because g(-j») and g(+j<) are zero, the inverse transform of the first term

of Eg. (5.,13) then is represented by

-
. -~ . .
Joo g =i st o ‘ . ,
tz) =t T, 7 T ) 1 vz,
z) = = ¢ du + / e N~ T ) e
e oo o . sin(o 4 9) 7 sin(a = )/ 2j sin(2tw)
-Jm ’k_g_jm I=Jw

. - (5.1h)

T e e
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where we have vritten 4 for 8, . In the second integral we replace w by

-w, The two paths then coincide, and the two contour integrals can be ccmbined

Joo  Joo
-1 ) ) 1 1 o
£f(z) = / 1 _ sin w(a-z-9) )
(z) I Y. [sin(a D) SCE 5)] sin (20W) dw (5.15)
~Jo =Jeo

Next we replace g+ 9 by ¢ + 3 -

Do) A

la= o + (% - 8) , in the first factor,
andu-ﬂbya-ﬁ+~2’5=a",[cz =

at - (; - 9)] in the second factor.

i

r(z) = 'TL/L/cosaSinw[a'_(z-'_(D‘Fﬂ"%[” ~

Liw e P sin ziw
S 3o
[ g AN
sin wla" (2 + ¢ = ¥ + = (5.16
Ix . Lg/q cos a" L -( 2)] 31N 94y g '
~ e

Since there is no pole at -wn/2 > o < x/2 , we were allowed to discard the

real parts of the limits of integration, We can perform the w integration

first, The following 1ntegral is of & tabulated form:

jUJ [¢s]
gl . . N
i sin wa L. sznh ° LR it _
/ i w2y gy 2§ o ten = a (5.17)
o sin wh ¢/ sin hvb
—,j‘f' fo}

Performing the v integration in the first integral Eg. (5.16) we obtain:

j“’ '::"C fer
] i 5 4 (Y r—
i = (7t - /2 1 i e SN
A N o . . GOy = (/'.l(;
fl(z) gﬂc/ﬂ tanl b ! cos o o cos (V-p/ '
-"jw -Joo
where
e e e M AN NAINE I b b AT 0 4 A eis s n L bk e afoege e Ak of rlid e St L e N

-

[

TR AS e 8 =

S o Lindt sl i Sadie

Aegoms

A it B A i . S e ) L i At e da b

e, % Wbl

st
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a-(z+cI>+6..§)=_V

Q
!

= ey tp

z+d>+ﬁ--;- (5.19)

=
n

The w integration in the second integral leads tc & function fz(z) which
differs only in that ¥ -n/2 is replaced by ~(9 - x/2). Two more such
functions then would result for (¢— -9), the face ¢ = - @, which are

similar in form except that ¥ — 5.,

Four integrals are of different form, they are obtained if we perform
the « integration first. In this case it is expedient to combine the two

integrals, Eq. (5.16) and to write Z =z + ¢:

Jou joo
1N -~ mt r, T A 1 ot o [ 7 1+ 6)
f(Z) I _1-__‘/ dix [u_x.n \T(\_:. 2o Zy ‘:/'..u.n WA L :_LJ aw
T8 cos O s1in 25w -
~jo ~Jw
Joo Jwo
3 f sin w(a - 7) cos wh dw
T T on cos o sin 2bw
-Jjoo ~Jo
Jwo Jo
_ 1 /‘/1(-.:111 W cos w2 - cos wd sin wZ)cosrw(D dw dox
T T ond . cos o sin ztw
“joo =
Jeoo
Jee
1 1 cos wa sin w2 cos Wi
= = — o - .
T un cos a sin 2%w dedw (5.20)
-jm _jm

because only the even part of the « integral contributes to the integral.

The & integration is of a iabulated form:

Joo
7 oy N
Cos W . cosh wu . ) A
J 2 ag = 2 /’ comn . T T (5.71)
.-jm cos & v ces -
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and
™ .
£(z) = + %‘/7 sin wZ cos w8 . =Z/’Sinh s7_cosh 60,
— s
. o8 = si Zsi
/e w = sin 20w 5 cosh s 3 sinh 27%s (5.21)
[+ ] [<]
- _%f sinh s(Z+0) . _ _1_/ sinhs(Z - 0)s (5.22)
T . 2 8 ‘
d cosh (s 5) sinh 2¢s ' cosh (g %)sinh 258
= f(=1? + ] !
where
'=Z+0=2z+9d+ L
z) = = 2
Zé:Z—G:—Z'i‘q)— (%— ’8) (5'25}
and
Wy ad . ‘
U& cosh s 3 sin 2¥s
Again, two morc terms result for the contributions of Lhe face @ = - &,

which are similar in form excepl that ¢ is replaced by - ¢, and 3 denotes
d_. 'fhe logarithmic derivabive of the solution thus consiste of the sum of

four tcrms

d lopg ¥(z) _w'(2) _ . . _- -\ . -
éz (z) . w%z) = fz + 04 U+)+£(z + b= O+)+i(z - ¢+ 0 (2 - b - o) .

(5.25)
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We still have to integrate each term up Lo the desired value of =z ., We

assume arbitrarily

z' = 0 for the lower limit of integration. This pro-

cedure is admiscsible because the resultant sclution is represented by

w(a)/w(mo) so that the integration constants, which lead to identical factors

in v{(x) and w(wo) cancel out in the final expressions. We thus have

where

anrd

z' '
. %
%(z;) = exp Jﬂ f(z\‘})dz} | (
(¢]

ai =z+0+0, z2;=2-0+0_,
ny =2+ ¢ -0, o, =2z ~0-0_,

W(z) = (2 dug(2h) « wglzd) + vylz))

(

because of the exponential nature of the solution; the exponents add, the

tunctions multiply.

v(a) = v (o + &+

= y@(q 4+ ¢ 4

The solution

We may still write the arguments in full:
s ] 7 bl
L - = 4 4 - L. -
7= W) Vlat e -2 9 ) v (a4 2= 8 )y (a-0

0 ) v(a+ e -0)vy (a-2+0) vla -0 -0)

of the diffraction problem then is given by

1 ~ikyr cos(a - @)
P(r,p,k) = Py L//L S{a)da
T
where
oy Al
S(w) = o(w) " WO)

5.26)

5.27)

It
-2— 4 '19_)

(5.28)

(5.29)

Roy oo o
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7P
- cos 7= w(a+ @) (5.30)
— o¥ — b8 Tt .
o(a) = % o T, = [;ot L% (a - wo) + tan __-HE";E_}IEE
. : D
sin 20 - S1n ZT'

The exact solution is given by

: _ 1 -Jkr cos a ylao + 0) mmq Lo 1(a+ 0) 9,1 e -
p(r,0) = Iﬁril./)e | -\LW?P:)- cos —5 (sin =3 - sin 2¢) da , (5.31)
= .

If, assuming kr > 0 , we deform the integration contour I into two paths of

steepest descent through the saddle points o = + m,

i J Y - -
JLKL + /s ! \lf O - J_) \;‘,('_ + ;rt) !
p(r,p) = == 2 ] DA VI AL (5.32)
2 i o ( 5 | <
YV 2nkr L 41 v P £ v o’ .
where M, and M? are the Malyuzhinets angle factors
co(" —%.
. - c 20 .
i = = (5.33)
sin n(p - m) gin ——
20 2%
Srar
cog ——2
TR0 -
1‘-/’[2 = — (5.34)
o3 w(p + 1) ain 2
n = - 50

N v ——— At
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VI. THE MALYUZIINETS w¢(a) FUNCTIONS AND THEIR APPROXIMATION

The Malyuzhinets function V(a) is the solution, Eq. (5.6) without poles
or zeroes in the strip Relal < 9. They are usually computed by developing
the integral solulion into a series up to the pole of the integrand, or by
evaluating the integral directly on the computer. Beyond the pole of the
integrand, the integral no longer represents the solution of the problem,
and one of the extension formulee (see Appendix A) must be used to determine
the functions for greater values of the agreement., Figure (6.1) shows w®(z)
Tor real z = ¢ + ® + 0, as a function of z; Fig. (6.2) represents the same
function wo'Yﬂ(z) and Fig. (6.3) the phasc angle for complex argument as
a function of the real part x with the imeginary part %y of z[Jm(z) as
parameter].

The wQ functions are relatively insensitive to the argument « except
for arpument values near their zerces and their poles. A small imaginary
part in the surface admittance increases the magnitude at the zero to a
finite small value, and reduces the magnitude at the pole to a finite value;
the effect on the resulting function is practically negligible if Im pe/Z 5%
(see Fig. 6.2). The surface then acts as if its impedance were real., If
the imaginary part of the relative surfacc admittance pec/z exceeds 1, the
curves become almost horizontal and ihe wedge acts as if it were pressurc
release. Because of thisg relatively small scnsitivity of the diffraction
field on the impedance on the surface, we can expect that the results also
apply to boundaries that cannot{ be described by point impedances, such as
plate boundaries,

Computations with the Malyuzhinets functions are greatly simplified

by the relations that exist between them, and which are swwerized in




appendix A. Furthermore, there is no need to evaluate the defining
integrals. $Since the Malyuzhinets functions are smooth functions, they

can be approximated to a high degree of accuracy by an expresgion of

the type
s T a [0
cos \g Qéero) COSs ﬁTaj
Vg la) = — (6.1)
cos (§ = )
pole

wherc Oﬁero and Obole are given by Eg. (A22). This function reproduces the
exact slope and magnitude of V(x) for a = 0, and is zero at ¢ and infinite

Zero

at the pole at apole; the second cogine factor in the numerator then is used

to improve the fit in the pole region. We find the following values for p(¢):

o 0.57 /3 0. 3/8x 0.57 0.7n 0.9x £

B(w) 4,63 5.0k 5.87 5.56 6.98 8.6 9.72 10.49

These functions approximate w®(a) in the whole range, also beyond the pole
and in the complex demain. Fig. (6.4) and (6.5) show the functions wn(o)

and v . (9) as computed by Eg. (6.1). The exact values have been
n/ e

computed by Zavadskii and Sakharova which fall on the two curves.
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VII, THE ANGLE FACTORS OF THE MALYUZHINETS SOLUTION

The angle factor in the Malyuzhinets integrand results by adding the

two angle factors that oc¢ur in the Sommerfeld integrand for the pressure

release vedge (see Eq. 3,10). The Malyuzhinets stationary phase solution

then cortains the angle factors

1
~ COS8 -2—d>'(p0

N R
sin 3% (¢p - n) - sin 77 96

and
cos = o
92@ (o] /
M2 ST w S (7.1)
sin == (¢ + n) = sin %5 9

We shall assume P, is pogitive. Tor negative @O, the two angle factors

simply interchange., The angle factor is plotted in Fig. (7.1) for a

straight edge and in Fig. (7.2) for various wedges with the angle of

incldent as parameter. If ¢ > ﬂ/Z, M1 has no poles in physical space

- P <o < % becauge the first term in the denominator then is always
negative, Ml increases towards the limits ¢ = 4 ¢ of the physical space

without reaching a maximum (where the slope is horizontal)., The two

greatest values of Ml then are given by

T AL e Bt scomererp e

;
i
3
s - CO8 = @
o 1o}
! ) + cop LS
f £ cos zpow - sin o5 Q@

i
b gy

oo

(7.2)
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Ml then has a minimum for (9 - n)n/20 = -x/2 or ¢ = n - ¢ when the ﬁ
diffracted ray propagates along the continuation of the face o = ¢ of
the wedge,
COS 2 ©
‘ L= 2v o < oS = @ (7.3)
\Ml min 1+ sin %o z2¢ Yo
2% 7o

and then increases constantly towards the faces ® = + ¢ of the wedge to the

value

= COS == @
2 To
{ = ~
M)y g . o (7.%) ;
— iCuSE\;—_H—Slné—\,SCP . :
max o o o
i
The secend angle factor ; ;
Co
COsS X (f 1
8 ua @ 1
M, = —— 2 o (7.5) *
L . 1 \ N 3 - 4
Sin = ((p + - n=-—qQ Y
n o5 \4 ) sin o @ : {
P
3
has two poles, one at the shadow boundary of the reflected wave (@ = 20 ? ;
e
- - @O) and one at the shadow boundary of the incident wave {(® = - x + wo). 4 i
It has a true mininum betbtween the two shadow boundarics for ¢ = 9 - n: ;
® 4
cos == @ i
2D Yo ¢ M
(Mz)mjn = " (76) 5
1l - sin a wo %

and it decreases from the shadow boundaries towards the wedgz at ¢ = + ¢

to the same values as those given by Eg. (7.2) for W oat 4 0,




CTTTTTT T T TR TR T TR T IR EETRET ANTTee e e

32

If @0 is negative and ¢ 1is replaced by - ¢, M, changes into M, and

1 2

M, into M. Fig. (7.1a) shows the basic shape of the curves Ml(¢) and

M2(®) and the angular ranges in which each term is positive and negative. -
Figure (7.1d) to g show for comparison also the Sommerfeld and the

Kirchhoff sclutions for the rigid and the pressure release straight edge.

We find that M2 is not very different from the Kirchhoff or Sommerfeld

solution for the pressure release straight edge. Figures (7.3) and (7.4)

represent the angle factors for backscatter when ¢ = mo as rectangular and

polar plots, M2 and Ml turn out to be the exact mirror images of cach

other 2t the axis @ = 0. We can confine our attention to the space 0 < @, < Q,
because when looking at the backscattered field we can always assume we %
are in front of the plafe (@O > 0). The maximum of the angle function

M2 then recoresents the diffraction at the shadow boundary of the reflected
wave when it is coinecident with the incident wave, j.e, when it impinges
normal to a wedge surface, This is the case when the transducer is just
at the shadow boundary of the geometrically reflected wave. 1In practical
situaticons, the transducer will be within the cone of the reflected waves i
or it will be outside. Inside, diffraction does not contribute much to ;
backszatter., Outside of it, the received signal is exclusively due to i
iiffraction. The amplitude ol the received signal then decreases greatly

with the angular distance from the shadow boundary,

M ot i i e

For pressure release surfaces:

oc/zZ = cog 0 = ¢ 0 4+ j0.) = cos ¥ cosh 0, - j sin 0 sin O, o 7.
pe/ o os (0 ioy) - s v ;= (r.7)

Because the real part of the iumpedance must be positive, 0O , we musl have

—
~
—

[av] =

r

=4 o
l —

But as o~ e, ¥ (ar+ jo, ) — Wh(jai)wsxm (see Fig. 6.2 ) and the ¥, functions

¢

in the numerator and denominator cancel, Thus the multiplier ¥(a + w)/W(@o)»9 1
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and the soluticn is _iven by
T
j(kr + E)
-1 €
P—-Z-cg_v.:__ (M1+M2) (7.8)
ankr

The two angle factors then simply add up, and the resultant expression reduces

to the classical solution for a pressure release wedge.

For a rigid wedge 9+ =6_=0, and by Eq. All

L b ) L, N
v(a) = w¢(§) lcos 13 (a+ &) cos g7 (2 - D),

1 . I LA S £, B
= 5 v, (5) [eos gy o + cos 1] =5 v(Z) coen

) 20 2 < (7.9)

and

S hig
vola) cos — O
T

VG T T s e

(7.10)

For a straight edge, the functions ¥(¢ - x) and ¥(®» + x) then become
proportional to sin @/2 and to - sin ¢/2, and the two terms in the
Malyuzhinets solution counteract each other in the angular range ¢ > 0 .

Thus, the solution for ithe rigid siraight edge becomes

- & 2 |

cos mo/z ~ Tcos mo/g J (7.11)

(i + 3) {sin o/2 M sin @/2 M,

V 2nkr

Comparison with the corresponding Sommerfeld solution gives the Sommerfeld

factors in terms of Ml and MZ’ (sece Appendix B). The converse procedure,

i.e. the expressing of the factor Ml and M2 in terms of the Sommerf{eld

R s i T ¢
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factors leads to very complex expressions that contain also the angle
functions of (n/2¢)(a) aud of n“/zé.
For an impedance matched wedge:

sin 6i =1, 9==x/2, 6=0 (7.12)

and by Eq. A13
V(o) = ¥ ’d‘:)lJ v2 _(a) (7.13)
@ ¢/2

The W function then is proportional to the square of the WQ/Z(Q) functicn
that is plotted in Fig. 5.la. For a straight edge, 2®/2 = 5 and the zero
of this function occurs for « =(3/2ﬁr, and that of the solution for

G+ =3/2)n, o = u/2; 1,e,, there is no field reflected or diffracted

normal to the surface of the straight edge.

b | i i.j“
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VIIT, THE MALYUZHINETS FUNCYION AND THE CLASSICAL REFLECTION

FACTOR AND THE EXIT FACTCR

The second term in the Malyuzhinets stationary phase solution (Eq. 5.3Z)

ic closely related to the classical reflexion factor. If wo is the angle of

incidence with respect to the plane of symmetry of the wedge, the angle

o

Mo Of the incident wave with the normal of the vedge surface(p = & - n/2)
3

is given by (see Fig. 8,1):
] Pyo = & - /2 - @, (8.1)

and the angle of the reflected wave with the ¢ = 0 axis by

T

b= -n/2 g =2 -~ @ (8.2)

For this angle, the angle factor M2 (Ba.5,34), in the Malyuzhinets solution

Eq. (5.32) has a pole which determines the field at the shadow boundary.

To evaluate the solution for {he shadow boundary, the integral (5,31) is

t written in the form

_ A n) ra(z),,
P‘fz—‘.‘"z‘ ¢ de (8.3)
: o]
1
{ The stationary phase solution then, when s coincides with the stationary
;{ phase point, is given by
) 7.
‘ p = jn n(z,) erelz,) (8.1)

(see Jones, The Theory of Eleclrcmagnetism, Pergamon Press 190h, New Yorlk,
p. 690)., Thus we find from (5.51) for the contribution of the saddle point

¢ Re(z) = + x:

i !mq‘gwwmwﬁ,“ktfﬁ}“‘ [P T e v g T A S o
'
. '

\ ‘



@ Jkr y(rm + o) cos(ncpo/zw) !
plm®) = 3% g5 )
T Q

g I _
%6 ©°8 33 (r 4+ o) Vg

jkr 1[[(2@ - (P())
V(e

=1/2 e
It ig shown in the classical theory of diffraction’ that this term should be
equal. to half the amplitude of and of opposite signg as that of the reflected
wave.

Thus, we are justified to interpret the ratio

- w(2e - o))

——-—\l—’m——= R((DO) (8.6)

as the reflection factor of the wedge surlace for a wave incident under an
@

angle (o - QO) with respect to the plane of the retflecting surtace. To
prove this conclusion, lel us assume for reasons of simplicity that both

wedge surlaces are covered with the same matcrial so that 64; 0 =0.

! We then have (sce Egs. 9.28 and A13):

(o + D) vy (a0 - 0)
_ ‘V(])/a (11/,_. i (8.{)
W((PC_) W, {n + 0) V.o (fh - O)
Te/LC o TG0

and using Fqualion Al5:

g ) . . B . i
Skudrzyk: Foundations of Acousiics, page H70-57L, Springer Verlag, Iew York
and Vienna, 1972,

e
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-—

(24 - 20 - ¢+ 0) v 20 - -0
v(2? - ) i Vo p (20 = G+ 0) wyz(m ¢, = 0)
\y(rpo)

, = R _ —
WQ/Z\-CDO 4 H) Wq‘/z( CDO e)

= cot 1/2(-¢O + 6 + n/2 + ¢) cot 1/2(-cpo -0+ /2 +0)

cos € - sin (- ¢, + ®) 2o.) i
—_ = - (|
= Ccs 0 + sin (- ot 1) Pe ‘ (8.8)

But ¢ - N is the grazing angle of the incident wave with the reflecting
surlace of the wedge. If we replaced ¢ - @o by the angle with respect to
the normal of the surface, the sine would be replaced by the cogine of
that angle. Thus, R(@O) is identical with the classical 1eflection factor
of the impedance covered infinite surface. This classical reflection factor,
therefore, describes the effect of diffraction at the shadow boundary.

The impedance covers of the wedge surfaces modify the diffraction
phenomenon. This modification, relabive to the diffraction of & pressure

releasce wedge, is described by the functions

U(p 4 =« . V(p - x)
v M _AETEE7— 8.9)

Beeuuse $(wo) is a fuucilion Lhui varics very little with the angle ol incidence,

X
the sbove two functiong arc practically independent of the angle of incidence,

Thiz conclusion is the most remuarkable rogult derived from the exact theory.
It is the amyle ¢ of exit of thne diffracled rayvs that determines lhe in-
flaence of the impedancce, repgardless of the angle of Lhe ineident radiation

(nec Fip. 8.2).

x
Jhe factor cos ﬂmo/ZWJoccurs ulco in the eclagsical theory if the field is
formulated in the Malyuzhincets form.
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For an arbitrary exit angle ©, we express the angle of exit by what
would be the angle wé of incidence for ¢ as an angle of exit in the
second term in the solution; i.e. ¢ = 2% = n - Dy The second term of

the solution then takes the form

wlo ) VRO =@ VL) '(‘w(coc'))“ |
J vo ) T T Vel vie) T R(@g) Vo) (8.10)

It is proportional to the factor R(mé) which we shall define as the exit
factor, The factor in the rectangular bracket is very nearly unity as
long as the angle of incidence P, and the angle of incidence wé (if the
diffracted ray were a reflected ray) are somewhat different from + 4,
Fipures 8.3 show a comparison of the clagsical exit factor R(@é) with
the Malyuzhinets function V(¢ + n). TIf we divided V(o + n) by w(mo) it
hecomes exactly edqual to R(mé). If we move the Malyuzhinets curve up or
dowvn in the logarithmic plot, the two curves coincide for ¢ = mé, and then
the difference between the two curves will give us the error that results
if we replace V(¢ + n)/W(mé) by R(mé). The curves prove that this crror
iz practically negligible everywhere except in the region neaxr ¢ = 0. We

{thus oblaln a very good approximation to the sccond, term by replacing

M (p 4 ) /h ()= M R(] )

in the range ¢ > 0, wo > 0, The impedgnee cover reduces the diffracted
ray by the exacl faclor which is the same ac the reflection factor for
a planc wave that muakes the pame angle with the dmpedance surface of the

wedge as the exit angle @ .
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For negative @, V(- '¢ + ﬁ)/w(@o) =v(op! - n)/W(-wo) 3s no longer
equivalent to the reflection factor, but is similar to the first factor
Y(® - ) for positive ¢. At the shadow boundary of the incident wave,

@ =-(x-0), ¢ +r=0 and ¥ +1)/k(e ) = v(p )/¥ (o, ) becomes equal

to unity. The first factor

where R (wé) is the exit factor for the second surface (% = 9_), then

represents the reflection from the second surface.
It ig convenient to call the factor M? the shadow boundary factor.

It reduces to R(@O) at the shadow boundary of the reflected wave, and to

wnity at the shadow boundary of the incident wave,

(8.11)




40

IX. ZEROES AND POLES OF THE W® FUNCTIONS AND THE VARIATION OF THE vy

FACTORS IN THE MALYUZHINETS SOLUTION

The properties of the wedge surface are represented by the W¢ functions,

The zeroes and poles of the W® functions follow from the mathematical deriva-

tion. “"hey can, however, be derived directly on the basis of the physics of

the problem. Since the Brewster angle adds additively to the argument of the

W® functions, we can assume the simplest possible situation, e.g. matching
for normal incidence for the front surface impedance (6+ = 0, 9, = ¢ - n/2),

and pressure release behavior for the rear surface, The pressure release

part then is very large and independent of ¢ and @, and cancels out in the

ratio W(a)/@(@o). Thus we have

v(a) plon+ @y (o - @) “"@/2(@)

——m - -
=3 ==

eyt —r o . (9.1)
4[(1)('4)0 k q))‘yq’(‘po - (b) W(‘D/Z(CPO)

-
]

G )
[

The reflected wave in the solution is precportional te ¥(m + ¢). Since

reflection must vanish for normal incidence when ¢ = P, = o - n/Z, ve

must have

Vapal® + ) | =¥yl + (4= x/2)] = 0 (9.2)

=3¢ - m/2

Hence the zeroeg closcst to o

U of the funciions w(a) arc given by

toa = wf2 4 2% (9.3)

The wedize solution contains the factor cos(ﬂm0/2¢), which vanishes f{or

grazing incidence unless ¥ part becomes infinite. For o rigid surface,

v, = n/2, and the reflected wave never vanishes, nol even al grazing

incidence when ¢

Y =T b and ¢ = ¢. Thus (% 4 ¢) must become infinite.
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Thus we have with 0, = n/2

V() vg(a+ 0+ n/2)¥ (a- ¢ - x/2) (9.4)
hence at ¢ =
(0 + )=, (20 + ZF) v (n/2) s = (9.5)

and the poles must be given by

ro = 20 + 3x/2 (9.6)

The ¥ functions have poles and zeroes also for [al > Sﬂ/Z + 20 , i.e.
outside the basic o - range. But these poles and zeroes are of interest
only for the product and series developments of the W® functions (see, for
instance, Ea. A3l),

The terms V¥ (p - x) and ¥ (¢ + =) of the stationary phase solution are
made up of the product of four w® functions, Egch term is zero, when one

R T Yo - - . R | e T ] - — o~ .
the arguments of ihe ‘iJ(I‘; Tunclions reduces Lo a4 = + (20 + =

of 1. The zeroes
(¢} 2

of the V(5 + @) and ¥ (n ~ ) terms of the Malyuzhinets solution then depend
on the O+ and 9_ of the impedance of the wedge surfaces, Let us first
consider the term ¥(n + @) which in the space 0 < @ < ¢ is similar to the

reflection factor of the surface z,. The argument ol the factors

Voo 4+ e 0) =y [(p+5-040,)+ (20 +3)] (9.7)

reduce to Q) = 27 + ﬂ/2 » and conscquently vanisheg, iff
(P=d)-£i0= (9.8)
¢J-1[+’3+

i.e. whon the exit angle is egual Lo one of the two Brewster angles O+ of an

impedance covered infinite surface,

i MEAK Tt N
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Similarly, the factors

wQ(w te b0 ) =Y 0o+ 0+ 3n/2 - (20 + n/2) + 0_]

or [p +Z - 30 + (20 + & 0

= Vol + 2 - (20 + Z) + 0_]
or due to the 49 periodicity of W¢

I T

=Ygl + 5+ 0+ 0_ +(20 + )] (9.9)

vanisheg iff
0= -0 ~ 31/2 + 6_
which is not in physical space, or if
p=-0-x/2+0_<-0 (9.10)

The last value lies in physical space if Re(0_) = n/2, i.e. if the z_ surface
is rigid and the wedge is degenerated to a semi-infinite plane.
The first term in the Malyuzhinetls solution is preportional. to V(¢ - =),

The zero values are given by
WQ(W -+ ¢ +0,)= W¢[@ -1t - &+ (20 + n/2) - w/2 + 0+] (9.11)

Thus, due to the Lo periodicity of W¢,

9 =3n/2+0 +0 - knt
or
—¢<a®i0+—-2—<d)

Thus zeroes in the first facter can occur only if ¢ < 3x/b + O+/2. 1t is
convenient to Considcr the space ¢ > 0 only and to define for this space
the factor that proportional to V(9 + x) as the gencralized shadow

boundary (and reflection) Tactor, and the factor that is proportional to

V(¢ - ) and which is usually much smaller than the scattering factor.
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The term V(p - n) of the solution then is practically independent

of the impedance covers of the wedge as long as ¢ > O, We have

\]/((p—:rt)=w(b((p-JT+<D+9+)1"J®(([)-:(+®—9+)1lf¢(cp-1t-®+9_)

W®($ w0 -0 ) (9.13)

all the factors have arguments that are within the limits

2®+9+—n";:®+0+ (9.14)

and

_1(-@-9_‘:"4-251)-9 (8.13)

Their product therefore is practically independent of 9+, and depends on

0_ only as ¢ apprcaches zero. The term V(9 + n) is taken as

V(o 4+ n) = ww(@'% 4 P+ 9+) Vplo + w4 0 - 0,)

. llf(b(q) - -9 + 9_)‘l’¢((p t -3 -0) (9.16)

The first two faclors depend greatly on O+ because their zeroesg are in the
range of pogitive ¢. The arpuments of the third and fourth terms then are
relatively small so that their product differs only little from unity. Thus
for positive ¢, V(p - x) is independent of 0+ and depends on O_ only in the
neighborhood of ¢ = 0, 1In contrast, ¥(p + x) depends strongly on O+ and

ig practicully indcpendent of U_. For negative values of ¢ = - [m]
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V(fo] - x)

V(e +n) =v(-{o|+n)

i
1l

V(e = x) =v(-|of-n) =u(jo| + x) (9.17)

Changing the sign of ¢ interchanges the two terms of the solution, and

the second term in the space ¢ < O becomes similar to the first term in the ;
space @ > 0 except that 6+ and O_ are interchanged. But, we have, however
to keep in mind that these two terms are not independent of each cther and
that strictly speaking, we cannot seperate the solution into reflection and
scattering erfects. Figure 9.1 shows the two V¥ functions as a function
oI the scattering angle. These curves have been computed on the assumption
that the iwo surfaces of the wedge have the same acoustic impedance. The
functions v, = V¥(9» - ) and Y, = V(p + ) then are completely symmetric

with respsct

(=2

o the angle § = 0, i.e. V(-9 - 2) = y(¢ + n), aud ¥y{¢ - ) =
V(~p + 7). The term Mzwz is zero for the two Brewster angles of exit for
¢ > 0 and the scatter term lel is zero for the Brewster angles of exit

with respect to the second wedge surface ¢ = -~ & wvhen ¢ < 0 .

i Pigure (9.2 )shows the W functions for a strai ght edge whose faces
have different acoustic impedances, In Fig, 9,2a, the straight edge is
matched to the medium for normal incidence, The shadow boundary factor ;
Ww(p + ) then is very similar to that for a straight edge. The scattering ?

4 factor ié similar, too, on the side of the incident wave. In the half space !

‘ oppesite to that of the incident wave, the scattering factor is modulated

by the exit factor of the impedance that faces the shadow space. Fig. (9.3) ?

shows the same as some of the ¥(¢p 4 x) and y(p - =) functions as polar N

graphs.




X. THE EF¥FECT OF THE IMPEDANCE OF THE WEDGE SURFACES
ON THE DIFFRACTION FIELD

(a) The Backscattered Field

The analysis of backscatter is simpler than that of diffraction since
we restrict ourselves to the half space in front of the scatterer. The
domine nt term, also in the backscattered field, is the second term of the
solution, It is obiteined by multiplying the angle factor M2 with the
Malyuzhinetz function y(p + n)/w(wo). This function reduces to the reflection
factor for normal incidence and, except for angles near ¢ = O, approaches
closely the exit factor of the reflecting surface., It 1s practically in-
dependent of the material on the other side of the straight edge. The
backscattered MZW(H +~wo)/W(®O) field is thus modulated by the exit factor
of the wedge material; it vanishes for the two brewster angles, But in
addition to this field, there is the field described by the first term of
the solution Ml»y(cpo - 5) [see Eq. (9.14) and Figs. 10.1 and 10.,2). In
contrast to the field sz!/(n + cpo)/xlr(fpo), this field does not depend on the
impedance of the illuminated side of the stralght edge, and depends on the
impe ance of the face in the shadow side only for small angles wo' We would
feel tempted to interpret the M2 term as the field generated by the shadow
boundary of the reflected wave, and the M term ag that due to the shac
boundary of the incident wave, However, this interpretation of the Malyuzhinets
solution is not permissible,

For backscatter in the direction ¢ = 0, the two Malyuzhinets components
always have the same sign and add up; this follows by considering the sign of
the componcnts M1W(w - n) and MRW(W + 5) in Figs. 10.1 and 10.2. Thus there
is always a maximum of backscatlter for P, = 0 like in the case of the ideally
pressure release straight edge or wedge (see Fig., 10.2). ‘'The width of this
maximun decreases as the surface impedances incrcase for a close to rigid

surface; all that is left is a needlc ghaped loop and for a rigid straight
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edge, the width of this needle decreases to zero. The rigid edge does not
backscatter for Oy = 0. The term MZW(wO 4 1) hes zerces al the two Brewster
angles and changes its sign between thin lines. The term M1W(wo - xn) is
always positive from ¢, = O up to the first Brewster angle. Both terms then
are positive and the field is represented by their sum. Beyond the first
Brewster angle up to 900, the second term becomes negative and stays negative
until ¢ reaches 900. In this angular range, the two terms substract. At
the first Brewster angle, the resultant field is finite. But above the first
Brewster angle, the two terms eventually become equal in magnitude and the

resultant field is zero. A computation based on the formulae given in

Appendix A shows that this zero for a straight edge is given by cos 6 + cos ®, = 1.

In the example shown in Fig. 10.3, the zero in the Brewster angle is shifted
by about 27 degrees towards the normal of the surface. At and above the
second Brewster augle, bobh teriwis are again of the same zign and their cum
decreases drastically towards grazing exit; the second Brewster angle there-

fore does not seem to generate another zero in the resultant solution,

" (b) The Diffracted Fieid

In considering diffraction, we also have to congsider the solution for
negative values of ¢. In the half space behind the diffracting plane, at
the shadow boundary of the incident wave, the V(p + ﬂ)/w(wo) term then
reduces to unity since the field near the shadow boundary of the incident
wave is not influenced by the material of the reflector, Away from the
shadow boundary towards the positive halfl space, this field shows a very
slight dependence on 0+. In contrast, the Ml[w(m - ﬂ)/W(mo)] term turns
out to be modulated by the exit factor cf the 0_ surface (see Fig. 9.1).
Thus, the term which at first sight we would have expected to be generated

by the szhadow boundary ot the reflected wave is modulated not with the

s
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reflection factor or the reflecting surface, but with the exit factor of

the surface in the shadow region, We are compelled to assume that this

term is generated exclusively by the surface in the shadow space,.
We thus arrive at the conclusion that the diffraction field of a rigid

or pressure release diffractor can be bhasically attributed to the shadow

boundaries., But the diffraction field of an impedance covered surface ig

no longer generated by the shadow boundaries alone, but is strongly modulated
with the exit factors of the diffracting surfaces. It exhibits minima in
the direction of the Brewster angles. Thus, the orinetation of the diffract-

ing surface is a significant factor in the exact theory in addition to thne

location of the shadow boundaries.
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XI. COMPARISON OF THE MALYUZHINETZ THEORY WITH THE

KIRCHHOFF AND SOMMERFELD THEORY

In the calssical Kirchhoff theory of diffyraction, the diffracting screens
are black screens. The screrns act as if they were the openings of infinitely
long ducts. Any radiation that hits the screen disappears in it without the
slightest reflection. Radiation that propagates grazing to a screen is
neither attenuated nor diffracted into the screen; and radiation that has
been diffracted once is no longer affected by the screen. The field at the
aperture is assumed to be that of the incident wave and diffracted fields
that propagate across the aperture are neglected in setting up the solution,
as a consequence of these assumptions. The diffracted field spreads mostly
in the direction of the incident wave, and there is no backscatter in this
direction. This conclusion follows also directly from the classical

Kirchhoff integral, This integral on the velocity potential U contains a

source and a dipole term as follows:

-Jkr -J&kr ~3jkr
N € /hxr e au 1 e™d
Uuo e - -— T e acemm ‘] -
“on Lyr on pe (pcj kU cos @ pcvn) T
1 e-jkr
= -5 (p cos 8 - pev ) T (11.1)
where .
_du . -du

PEeg e VTS (11.2)

and the term proportional {0 l/r has been neglected here. For a plane wave such
as the field that is assumed in the aperture in the Kirchhoff theory, these
iwo terms can be combined to a term of cardioid characteristics. Because

for a plane wave pev, = Py the Kirchhoff integrand reduces to

i o
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e-jkr

- p (cos 6 - 1) (11.3)

per

Thus the radjation is zero ir the backward direction (6 = 0).

The diffraction field in the Kirchhoff theory can be attributed to the
discontinuity of the field at the shadow boundary. This shadow boundary acts
like a semi-infinite plate that vibrates infinitely slightly below its coin-
cidence frequency. The regions of positive and negative volume flow
counteract each other except for a region of about half a wave length width
along the aperture. This region then generates the so called edge wave,
Edge radiation and radiation from the shadow boundary are thus equinatural
iuterpretations of the diffraction that is generated by a Kirchhoff
diffractor. It turns out that for a straight edge the Kirchhoff diffraction
is a maximum in the direction of propagation of the incident wave, and
exactly zero opposite. It is crudely inversely proporticnal to the angular
distance from the shadow boundary and henge decreases monotonically.

The Sommerfeld edge-wedge theory applies for rigid or pressure rcleasc

straight edges and wedges. 'The first term of the Sommerfeld solution

. 7t
(r,8) eJ(kr ) 1
u(r,%) = - Z (11.4)
’ VZ:tkr cos e r‘Dg_
vo2

is independent on whether the diffracting surface is rigid or is a pressure
release surface. It satisfies thie wave equation and sabisfies exactly the
same condilions at the scrcens as ithe Kirchhoff solution, In the Sommerfeld
language, the screens reprerent the branch surfaces (Lthe two-dimensional
branch cuts) that conncet the phynical space wilh the Riemann spaces (Lne
ducls that represent ihe Kirchhoff screens). IL salisfies Lthe conlinuity

conditions at the shadow boundary of the incident wave. But Lhe Sommerfeld
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term does represent the exact field in the apertures as it would correspond
to Kirchhoff screens if they couid be realized. Because of this field,

backsecatter is quite considerable.

The corresponding Malyuzhinets solution is obtained by assuming the

impedance matched for the angle of incidence P, = ﬂ/Z:

—

cos wo - cos 6

R=0= (11.5)

cos @o + cos ¢

Hence 0 = + @O = % ;3 the negative sign is unacceptable because the impedance

must have a pocitive real part, This angle wo'has been introduced in

Section 5 as the acoustic Brewster angle.

Figure 11,1 and 11.2 show & comparison for normal ineidence or the Kirchhotf

solution with the first term of the Sommerfeld solution and with the
Malyuzhinets solution for impedance match. The Kirchhoff solution shows

ne backscatter, butbt otherwise agrees better vwith the exact soluticn than

the first term of the Sommerfeld. solution. The zero of the Malyuzhinects
solution at 9 = m, i,e, at the impedance matched surface is obvicus. Since

we have used a stabtionary phase evaluation, the distance from the cdge of

the wedige is assumed to bwe very large, as a consequence, gll the rield

encrgy is impedance matched atl and near the impedance matlched surfaces. Tor
finite viedges and edges, the zero will usually be replaced by a minimum., It

is very likely that the Kirchhoff solution then will lead to still a much bettier

agrecuent with the exact colulion thal i1 does for the infinitcly cxtended vedge.

Figure 11.3 shows the two terme of the Malyuzhinets solution plotted
separately and their sum, for impedonce match atl normal incidence. The
first term I is negative and yeduccs the regultand amplitude to zero for

rays that propopate grazing to the impedance matched surface.

i S e B

e Pk MR s AaniNE

‘3

&

et

i 3ol L

.

Y

LU

i s it S

[ AT S .|




51

In the Kirchhoff theory, diffraction is exclusively a phenomenon of
the shadow boundaries or waves, We therefore obtain the Kirchhoff soclution
by eimply adding the field generated by the incident wave and that generated
by the reflected wave, assuming that the reflected amplitude is R(mo) times
that of the incident wave., This solution then approaches closely the exact
Malyuzhinets solution on the whole angular range except for two regions:
(1) the Malyuzhinets solution vanishes along the impedance covered surface
because we have derived it by a statlonary phase method, assuming that ihe
field point is very far away from the diffracting edge. In contrast, the
Kirchhoff surfaces do aot affect grazing rays. The Kirchhoff and the exact
solution therefore must differ for ¢ = + &5 ard (2) the Kirchhoff terms always
lead to zerco backscatter., The two solutions with, therefore, also differ
for ¢ = + ©y

The Malyvzhinets solution shows that the exit factor ghould be uged |

rather than'thc reflexion factor. Tor the exit angle equal to the angle

of incidence, the two factors are the same, Bul for other angles, the
results differ slightly. The exit foctor usually lecads to g better

appro¥imetion of tlhe position of the minima of the diffracted field; but

in general, the deviations are nol greal because, also in the view of the
exact theorics, diffraction is Lasically a phenomenon of the shudow :

boundarics. 1t i the angle of incidence and that of reflecetion that

determines the bulk of the diffraction phenomenon.  Fipgures 11 .M, 11.5 and ?
11 .6 show 2 compurison of Lhe cxact solublion with the ¥Yirchhoff znd Sommer-

feld solution, the sceond terms weighted Loth with R(p ) and k(w). Agrce-

0
[()

ment belween Lhe exact solution and Lhe Xirchhoff resull is exccllent, {or

o wn




the regions pointed out above i.e. grazing exit, backscatter in direction of
incidence and reflected waves.

Tinally, we are very interested in wedges where one surface is rigid,
the other pressure release., The Y function for this case reduces to

= o .:E ﬂ—-\zﬂ ~ya 2 4
V(@) = Vplor+ o+ S (o + 0 - =) = 43 (5) cos(a + o) Eé = WQ(%) COS\§% + E)

(11.6)

where we have assumed the + & surface rigid, the -~ ¢ surface pressure release.
The functions Wﬁ(a + j» ) have been dropped since they are constant and occur
in similar form in W(mo). The results are shown in Figure 11.7. 1f the

wave impinges on the pressure release surface, and if the second surface

is rigid, the solution is similar except that the term n/4 is replaced by

fWy

- /. The resuli of the coanpulotion is aloo plotted in Figure 11,7,

For normal incidence, the curveg are practically independent of the
impedance of the material in ihe shadow space. It follows from the derivatiion
in scelion ( I¥), that the solution near the shadow boundary is entirecly
independent of the surface propertics, and that it does slightilyr depend on
the impedance of the gurface in the shadow space as the field point moves
towards the diffracling plance, Ag a consequence of thic dependeney, the
zero in the diffracted £icld which for Wo = ﬂ/z oceurs al exuclly zero degrees
for the ripid-rigid straight cdge is chifted to about 350 for the rigid-
pressure releasc straight, edge.  Figure 11.8a shows the exuet solution for
the rigid-rigid straipght edpe, Pig, 11.8L that for the pressure relcasc-
relesce straight edge. PFigure 11.9 shows for comparison the Kircelhihoff
approximutign, vhich as would be czpected, leads Lo very good agreement in

most of Lhe anilar rangce.
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¥izure 11.10 shows the exact solution for a 90O pressure release-
rigid rigid, and a rigid-pressure rclease wedge. TFor comparison, the
diffraction at similar rigid-rigid and pressure releacc .- pressure-
release wedges are also entered. Again, the Kirchhoff theory would lead
to a very good approximatlion of ihe exact curves, For instance, if the
incident wave impinges on the pressure release surface at mo = lZOO, its
shadow houndary occurg at ¢ = - 60°, The shadow boundary of the reflected
wave which now is reflected in antiphare, occurs at ¢ = - SOO. The results
for an incident angle of 1350 are not included. This pogition lics along
the face of the wedge. "The solution for this case doesg not exist. As
stated previously, lhe staticnary phase method assumes that the field point
is very far from the diffracting edge, and since the angle of incidence

lies along the surface of the wedge, all the incident cnergy ic absorbont

Tor these rays propagating at grazing.
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XII. THE PHYSICAL INTERPRETATION OF THE MALYUZHINETS SOLUTION

The exact solution for a straight edge with non rigid surfaces is based
on the solution for the straight edge with pressure release sgurfaces, There
is a good reason for using the pressure release sclution as a sterting point
and to modify this solution for impedance covered surfaces, A wave pro-
pagating in the direction of the plane of the edge towards the edge of &
pressure release straight edge 1s backscattered, i.e. the diffracted field
is not zers for @O = 0. It is physically obvious that an impedance covered
straight edge will also backecatter, whereas a rigid straight edge will
hzve no effect at all on a wave that propagates parallel to its plane,

@O being zero. The wave passes left and right along it without gen=rating
a diffraciion field, Thus a solution based on the field scattered by a
rigid straight edge would break down tor mo = (J. The solution is finite for
¢ = 4+ ¢ for the pressure release wedge, and for all wedges whose faces have
finite impedances regardless of how small their impedance may be. The
vanishing of the basic solution for ¢ = 4+ ¢ is therefore of no consequence,

The solution for Lhe pressure release wedge then is given by the sum
of the two Sommerfeld terms, or by the sum of the two Malyuzhinets terms.
The Sommerfeld and the Malyuzhinets lermg represent different partial
fraction represcntation of the exact'solution for the pressure release
strairht edge. The Sommerfeld solution is equivalent to superposing the
ficlds generaled by @ source and by an imapge source located behind the com-
plementar; straight edge.

liowever, the image concepl breaks down vhen the surfaces arce impedance
covercd. An infinite nunber of imgpge sources of strengih R, Rg, RS, elc,
would then Ye nceded where R ig the reflection factor of each of the {wo

surfaces, and the Soumerfeld representation becomes uscless,
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The Malyuzhinets term MEW(@ + ﬁ)/W(wo) depends almost only on 0;
and it depends only to a small extent on the impedance of the sgurface on
the shadow side of the straight edge* in the angular range near zero. It
reduces to the amplitude of the reflected wave at the shadow boundary of
this wave, and to unity a2t the shadow boundary of the ircident wave, For
other angles on the positive side of the straight edge, this field is
proportional to the exit factor of the reflecting (upper) surface, The
Tield described by this term is not very different from the Kirchhoff
fields gencrated by the shadow boundaries of the reflected and the incident
wave., Bub as we penetrate into the shadow region, the contribution of the
shadow boundary of the reflected wave practically disappears.
In the region around ¢ = 0, the Malyuzhinets term V(¢ + n)Mz/w(wo) describes
a field that is stronger than the Kirchhoff field, Because of the impedance
cover, the surfaces of the straight edge move in and out like the surfaces
of a transducer; they are forced to vibrate by the incident wave, 1If .
there were no edge region, the impedance covered surface would reemit the
incident wave in form of the reflected wave and would simply act like a
reflector. However, the wave that passes the edge represents a reservoir
of energy. Some of the energy is aluo sucked into the edge region, a wave

is always bvent into an impedance surface, and roemi

W - 1) =¥ (0 + O (@ = 0, (- 2x O (¢ - 2n 4 0)
= \'r’ﬂ(f{: - 21 + 0_ )\]/n(q) - 29 - 0_) for ¢ > 0,

beeause Wﬂcs 1 if 'a] <,

Vg = n) = v(-|o| -~ x) E’wﬂ( ol + 2 + 0_)wﬂ( ol +2n-0) for ¢ <0

V(g + n) = Wﬂ(@ 4+ 23t 4 0+)Wﬁ(m + 25 - 0+)¢ﬂ(m 4 o_) ﬂ(m + 0_)

=y (o + 2w+ 0 (4 20 - 0)

T T P R LR T fo- 4

4 !

e
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first term of the Malyuzhinets solution then seems dominantly to represent
two fields. The function Y(¢ = n) depends almost exclusively on 0_. In
the front space, Y(p - xn) depends very weekly on 0_ and is practically
independent of G+. Thig field can therefore be interpreted as a further
contribution of the shadow boundary of the incident wave to the diffraction
field. 1In the space @ < 0O, this term becomes proportional to the exit factor
of the surface O0_. The ternm le(w - n)/w(mo) can then be interpreted as

the field that is reemittcd by the vibrating edge region., Figure (11.5)
shows a schematic representatipn of the nature of the two terms of the
solutions on the twoe sides of the diffracting semi-~infinite plane.

The exact solution proves that the Xirchhoff concept of the diffraction
phenomenon being szolely generated by the shadow boundaries is only a first
anproximation for impedance covered surfaces. According to the exact theory,
some of the incident energy is scattered al the edge because of the dis-
continuity of the acoustic properties of the mediwn due to the impedance
cover, Because of its finite impedance, the edge region is compressible
and scatters sound like a chain of ajir bubbles, located at the edge,
scatter sound in water. This scattering effect seems to be greuter the
smaller the surface iwpedance. A pe matched edge thus scatters almosti as
much sound as a pressurc release wedge; for instance, when the wave pro-
pagatcs into the edpe parallel to an impedance covered plane. In
addition, the edge region and the whole surfuce of the straight edge
reemits the incident energy that is not sculiered according to the exit
law, 'lhe amplitude recemitied ray is proportional. to the exit factor of
the surface, The diffracted Brewster angles of the impedance covered

gurfaces, repardless of the position of the shadow boundaries, 1L the

v

R
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Kirchhoff concept would apply, then the diffraction field would be pro-
portional to the reflection factor for the angle of incidence of the
radiation and would not show any Brewster angle dependence.

The curves presented in this report show the variations of back-
scatter and diffraction in those instances that might be of practical
interest, The various approximgtions are of considerable interest since
they help to understand the physics of diffraction., But on the basis of
the cosine representation of the Malyuzhinets functions, practically exact
computations can be performed with the same case as Sommerfeld or Kirchhoff
gpproximations., There is thus no need to investigate wedge or edge

diffraction with the aid of approximate theories.
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APPENDIX A

Representation of the W¢ Functions

The following representations of the w¢(a) functions have been derived

in the above Section V.

d
Vg(a) = exP[él‘/"/) It_v' cos \(/3“_ u)] 3 (A1)

)

o 1 v, Qav
\b(b(a) :V(;s ;:—G—) exp [Zﬂ/ln(l - i tg 1+¢ th II-) on V] (A2)

o |
. (1)
¥ (@) =5 Ll \3 20(2n - 1) ¥ (ﬂ/ﬁ)(cm - ‘j) J. (

The form Al is derived in very much the same manner as £g.(5.18) except that
the w 1integration is performed first in Equation (A2)., By deforming the path
of integration from infinity above the real axis to zero and back to infinity

=~V mee 4l
TALUW wlil

5]
e
)
m
-
3
&
'.J
L
AY)
e
s
v

cbtained for the rational ratio 4¢/r = n/m and a(k,£) = %

we have for ¢dd and even n, respectively:

n n cos 1/2 alk, 1) (-l)z ()

v () =T T (o ME D) ; i

an/bm Yol g1 (cos 1/2 la/n + alk,2)])’

m n ok, 2)+ a/n -

{a) = I 1 exp [('l) L//7 u ctg u du . (A5)
mn/bm Kol o1
ok, t)

L \ - ) S

L
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Yﬂ/h(a) = cos % 3 Yﬂ/z(a) = e"P[E‘/?u -cgssxlln - du] ; (26)

‘Ysﬁ/h(a) _ cos 1/6 (az-. n) cos 1/6 (o + =) : (A7)
cos”(n/6) cos 1/6 o
o . X ooV
) 1 -1 sin v + 4x cos p sin g - 2v (28)
\Ifﬁ(a) = exp [ B t/ﬂ cos v av
¢ |

For large values of Im(z)

! : s L&
w(z2)=30 (eﬂ!Imz/SCD,},g-\ ’cos % exp [- Eil; f /1 cos hcio{rksl/s 2(1 ] (19)

-

and

y(z) |
7 %5 > 1 (A10)

The following relations can be derived for the Malyurzhinetz functions elther
from their integral representation or residue evaluation cf the contour
integral or from the basic properties of thesc functions (meromorphic in

strip, poles and zeroes known).

N e Ay w4 v

|

S e k-

N N SO

[ T P e



where z,
P

Zeroes.

are the values i’ %
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P1t Ty & 4 nQ
WQ(G + 5) W¢(a - E) = Vg (E) cos 17

vol) Vgl + 1) = vo(§) cos 5 (a+3)

bl + ) ¥ola = 0) = vy ()7 vy ()

ygla + 20) ye(a) = xv(p(@)z Vgplat @)

WQ(a + 20) 1 B
W—Eﬂ = cot —2‘ ((Z +- é-) s

\y@(a + 49)
= cot
W¢(a)

-

\
YREY

m=tam%(a+%-2®)
0 -

2
vola+ B vyla - 5) = vy(F) eos f3

\

V(%) cos g5 (a+ 3)

ypla + n) vyla)

5 2,7 70 7
- bt _\ [ale}] — —
Vp(@) gla - ) = ¥g(3) cos pg (@ - 3)
v . . nli + z) nz 1
\yo[z + (Z‘b + > )] = + sin ——-\-—h‘&) cosec I3 (2‘1’ -3 + z)
z_ =+ (2¢ 4-2’1) o =+ (20 4 %)
P = 27 "o - 2

B S Sl S

(A12)

(A13)

(a1h)

(Al5)

(A16)

(ALT)

(A18)

(AL9)

for the pules of ¢¢(z) and z those for the
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The residues r at the poles Q, are easily determined by means of the

relation
v [z + (20 + éﬂ)] = + gin ML L z) cosec = v (2% - f-+-z) | (A23)
¢ - 2 - & I %o 2 - 4

which puts the poles into a trigonometric factor.

Two more forms for the complex V(a) function are of interest. They are

derived with the aid of the relations that apply for the ¢¢(a) funetions,

v(a) = ypla+ 0+ 6,) yp(a+ 0~ 0) yy(a=-2+6) yy(a~-e-6)
e Lh @1 [eos & (04 0 - 5) cos s (o= 0+ 9]
= W@Z' COSW -+COSW(Q- } _)
1
. W¢(a+¢)-'é-ﬁ+ﬂ+) 1@:®(a-®+%‘-ﬁ_.3_)
x T — (h2k)
w¢(a+¢-§n-ﬂ+) “’Q(a‘®+§“+‘9_>
alsc if 8+ = 0_
v(o) = yyla + ¢+ 9) Yyla ~ ¢+ 0) Vola+ @ - 0) v (a~ ¢ - 0) (A25)

n

601" vy (4 0) wg (e - 0)

I7

3, =9, =0 (rigid wedge)

b1 7T 1 7
W) = vyla+ P s (a+ o =) (a- 0+ (a-0-3)

|}

h 2 sy ona Mo e
\\qu) (b).yq)/?‘ (2-) cos 55 ° ﬂfq) (2') cos oo

ok et -



Hence

¥(p - n) = cos (@ ~ =)

Bl=

l:

V(p + n) = cos (¢ + =)

oS
[S)

and for ¢ = n:

p sl e i e e et b b o
At ot YA pey o o

V(p - m) = const, sin ¢/2
V(e + ) = const, sin @/2
Ir
N
'8+ 'B_ = 5 + 3 ’
d
V(o)

—W =1 regardless of « and P,

o B ks s o

1 one surface is pressure release

-_—

6 = -72-(- +ge g la s 5)—-}4/@(5)-)m (426)

e il AR st e s

and the two ¥, factors that contain © drop cut of the solution

B P o a2 e e n? b e ln RS

Yo + 7)
W(CPO) é

If a surface is rigid, 0 = x/2 , then

2 71
Yo+ o+ 2 (a+ 0 - 2) = 7 (3) cos 1 (a27)

and the two terms in the solution V(v + n)/‘lf(@o) can be replaced by the two

.,. .
terms cos .’_‘E{.’L_?i‘.)_ respectively.
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: If the front surface 1s impedance matched (z+ = pc), then 6, = 0, and:
1 V(o) = W(D(Oé + ub)\h(b(a - <1))\;r®(a -0 + O_)q;'@(a -9 -0)
1 = Vo(@y p(vglo - @+ 0 (e - ¢ - 5)
3
4
: |
i :
4 [
i
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APPENDIX B

Comparison of the Malyuzhinets and the Sommerfeld Solution

The Sommerfeld solution applies only to the rigid and the pressure
release wedges., It consists of two terms, one of which represents the fileld
of the incident wave, the other the field generated by an image source (hidden
in a Riemann space). It is of interest to force the Malyuzhinets sclution
into a similar form, to investigate whether in the general case a simple analysis
is possible in terms of fields generated by a real source and an image source.

The Malyuzhinets solution is given by

D
= Dt 4 X
_— (cos 20 3 - (@ - 1) + Y(Pp + 7) eak(‘ + H)
ERTEN) D - P —
© sin = (¢-nt) - sin —% sin 2 (¢ + x) - sin == V 2rkr
o e 27 2.
(B1)
and the Sommerfeld solution is -
- b
- - jik(r +
D,k) = —T§FE~——_ sin % L 5T & 1 o k(1)
2V 2 kr i o . o
o - 5 —— P05 = 1 CO8 —em——— /1y
cos Y co ’y co v co y (Bz)
?A'rhc\ﬂn
2n )
VET : (B3) |

For the straight edge, v = 2, The two angular functions in (B2) can be written

as follows:

— x e =5, 15, I

Let us write their sum with a common denominator.

[



For the minus sign we have the numerator

4= - + -

. ?+ . -9, P+ D -9 o
cos — + cos ~ Ccos — + cos = 0§ ———— 4 0§ ————— = 2 COS5 =— COS
v v v v v

(B5)
For the plus sign we get
¢+ Q-9
7 0 7 0 7 . o .9
— + cos - + ¢c0s ~ - €05 ~——— = 2(Cc0s8 — - 8in — sin =
eos 3 Y ¥ ( v v S v) (B0)
Thus we have
¢
2 cos %cos T}C-)-
S, .8 = .
17 %2 ERaT T 9 (B7)
o o
(cos = - cos — Y(cos = + cog ——m—=)
v v
and
. P X
Z(COS%- sin—\—?sin%)
a - ( [e]
"1t Sz ¢ -9 P+ (15)
(cos = - cos ——2)(cos & + cog ——= )
v v v v
The Malyuzhinels solution contuzins the terms -= and L where
' “M M
11 1 1
e o " ®
i Moogin &= X | 5in -2 gin &2 T g4 O
v \Y
- 1 1
- - il = { - 1 7 -4 - r oA o
2 sin Y B cos % 2 sin % cos T o
Y - 2V ' 2v v Z
(L9)
P Q@
L+ . : o - .
sin (-[-)--——-1—[-) - sin (=) - [s.in L-T _ gin 2]
Y v v v
¢ - -0, G+ - w ® -G G4 A (L10)
2 sin - sin - 2 cos - 2 cos - 2
2v 2v 2v YAy
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) Y 5
+ 7 - :
[sin 2% _ 5qn -2] - [sin 2=Z _ sin oy
v Y v
- P G+
[cos X - cos em—2 cos 4 copg ———2
s 3 y T Y 08 — ]
. qj + . D -7
[sin - sin = '
v v ] 2 sin X cos 2 :
- _ v v ,
Q- @ P+ P -9 Pt '
b 0 - T 0 b o) =) ;
[cos = - cog ~———= cos = 4 CO8 m————— cos = - ¢ X !
5 " 0 " s — 1 (cos y 08 )(cos o+ cos = :
- (B11) :
?
Similarly we have !
1,1 1 . 1 i |
(4 B P - 1 Y
- o} \
H " sin 9 sin 25T _ gip -2 i
v i
S .t o o ¢ T
Lein - gin —=]4 lgin - sin —}
v A
P - R
1 -
(cos T - cos 2)(cos = + cos — 2
v v v !
2 [« sin —\-}-9- + sin - cos -g-]
G-, . CRREC (F12)
(cos = - cos Y{cos = + cos ———2
We can exprecs the Malyuzhinets temmg in terms of the Sommerfeld terms as :
follows: }
. ® i
) 2 sin — cos -~ {
L1, v !
(1\4 & P - O P+ ¢
M { \
! (cos = - cos —-—2\,(cos I+ cos —2 {
v v v
-
2 sin % COs (Vf sin 'ﬂ\.—r {
= g .« - . 3 - 113 -
m cpo (Jl 02) q)o ( l S”) (Llu) 5
2 cos — cog ~ CC5 - |
v v v |
|
i
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c o —

o) .. @ n
2 [- sin - + sin = cos —]

1
—— o ——— - -
%M Py x ¢ - P % P+ P
(cos v - cos o )(cos 5 + cos —-;}—)
(- sin = + sin %)- cos =)
= + Y (Sl + Sz)
(cos X - sin ?—O— sin 2 )
Yy T Ty v

The Malyuzhinets solution can now be written as follows

YO = 1) + (P +7) = A
Y(P ~ x) - Y(® + x) =B 1
|
(o - %) we+x), A, 1 1, B,1 I {
[ - R e f ey
N Py 2 ay By 29 By
¢
1 - P (- sin _VQ + sin % cos %-)
u(r,?) = Vi, A[A sin 3 (Sl - Sz) + B cos — T -
(cos = = sin ==~ gin =)
v v
: 0 L9 b
¢ (~ sin -— + sin = cos =)
= E—_}‘ (A sinZ+ 2 cos — Y . Y. 18
vi(® ) Y v @ 1
(e} 7 - o 9P
cos = ~ sin -—= sin =
v v v
o @
., B cos(qg)(- sin 1% + sin % cos %)
+ [-A sin i % ] 5,

n . Q.
COZ — - 81N - Sin
v v

< |5

For the pressurc releace wedge, A/¢(@O) =1, B/w(wo) = 0, and the solution
becomes identical with that given by Sommerfeld. For the straight edge,
this Eq. 19 reduccs to

cos({'p /Z) COS('P /2)
1 \ o 54 -4 + ¥ 2
u(r,®) = mﬂ@‘ b ey B ey ] S}
o

(P1h)

(Sl 4 82}

(318)
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1 ( cos q>o/2 1
= - + y(p + + - 1)- +
E@zagj EW(@ 1) + y(P + x) + [y(® - 1)-y(9 + n)] Sin @/2] RN
- . - cos
2
1 cos ¢0/2 1
+ - - - + + - ! : —
(5, [-0(@ = ) = w(@ + 2) + [y(® = ) ¥(®+ 1)] 7] T,
cos —p5——
2
(B20)
The first factor
S, = m——r2 (B21)
Z. -9
cos <
2
has a pole at @ = -x + P53 this pole occurs at the shadow boundary of the
transmitted wave. The second factor
a - .,..,-_._..__l
5, = m +(po (B22)
cos —*'2—'—

has a pole at © = 7 - ®O gt the shadow boundary of the reflecled wave.

For the shadow bcundary of the inecident wave, ¢ = - x + P The first
bracket with the factor in front reduces to the Sommerfeld first term: the
sccond brackel with the factor in front reduces to the shadow boundary of' the
reflected wave Lo the classical reflection factor (1/8 V(zn - wo)/w(mu)
times the sccond Sommerfeld term. But the term differs from the Sommerfield
terms in the range between the two shadow Loundaries. This all means that
the impedance surfaces generate some interaclion between the two fields and
that the exact solution therefore cauncl e obtuined by the method cf simple
image sources.  ‘lhe results show thal the Malyuzhinets fona of the solution

is considerably simpler. Foreing it into the Soumerfeld form helps in no way.
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The path T’ of integration can be deformed arbitrarily
within the regions of convergence shown shaded in the diagram,
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Figure 6,2

The absolute valuc o:

for argument I = Xp
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Figure 8,2 The angle of incidence ¢ and the angle of exit ¢
fer a wedype, o




- e AT T e e s YA AT R - , SR AL
E; i L AT Ty T e e YT AT v R TCR A O T e T R R TR L A
..

R . L

i e et

R(90°) =0%

————= Y {p+r) ,MALYUZHINETS FUNCTION
——— EXIT FACTOR

COs ¢p —Cosf

cos¢ + cosb

o.l

i ! ]
120 150 180

10 0 30 60

Figure 8,%a Comparison of the exii factor with the Malyuzhinets fuunction,

A constant mutiplying tbe Mulyuzhinets function is determined 1
by having the two curves coincide for @ = 5 - ¢, ]
+ 3

' ke

R O Y W W

IR OIS NITPRIUC I SR

ot T it e




R(20°)=0.04%
éu. = w/8

A P f——rte————

6_ = /8

———— y (¢ +7), MALYUZHINETS FUNCTION -
EXIT FACTOR

JJ . 1 |
120 150 180

¢ (deg)
Figure &.3b Comparison of the exit factor wilh the Malyuzhineta functicn.
A constent multiplying thce Malyuzbinets function is delermined
by having tue two curves coincide for ¢ =t - ¢




Lo d

R(90°) = 17.2%

==y (3o ) ,MALYUZHINETS FUNCTION
EXIT FACTOR

0+ =5 /4

6_=nw/4

o ifiopnin b Aol

-k i bl €

o b b Emions

e Sk o, Ao Lan o e ki, Db i A et ML Ll 32

[
|
! |
' |
-2 |
- Ei &l
i i
- 34 l T
- i ! ;
- ‘ | a
3 [ i
- |
|
...3 ! :
10 ; | _i I { | 1 , 1
0 30 o0 80 {20 150 180

Figure 8.3c

m o A et S R AR VRS o T

¢ {deg)

Couwparison of the exit factor with the Malyuzhinets function. A
, constant multiplying the Malyuzhinets function is determined by

having the two curves coincide for ¢ = 7 - (po,




107
) R(90°)= 45%
' 8, =37/8
6_ =3n/8
mmemm (), MALYUZHINETS FUNCTION -
EXIT FACTOR -

|

b o it i e iy

bt e b Stk

et TP

A e R At ! m i

i, a2 S b Pk i AL i T, e

Tl 41 _: 1 1 ! J
o) 30 60 90 120 150 180
¢ (deg)
Figure 8.3d4 Comparison of the exit fuctor with the Malyuzhineils function.
A constant multiplying the Malyuzhinets function is determined
by having the two curves coincide for o = o - v
ARG i - =TT =TI e o - SO SRR e Y b LY

A

I-;.: AT . .




T S ST

108

\;'l(qb"r'rr)
—--- NEGATIVE
——— POSITIVE
L‘-‘-—“M\\ //’-,..-—
v
//
/"'\
/7 / \\
/7 \
/ I[ \
/ / \\
¢\ ! ‘
, I/ ! {
-130° b o° 13G°
(g —w)
\ -.""'\\ /’7""
\\
\\
7NN
\ p AN/
/ NN
\ / \ Y /
\ VAN
o , v/ !
OO

~130° & 180°

Figure 9.la The basic shapecs and the signs of the funetions V(¢ - n) and
yi{op 4 7).



109

J29SMaIg SNOTIBA IO0J 83pe FUTTBILGS B IC0J SI0TIOUNG (% + d)a U3 30 qonpoad auy

*5 ss1Suz

-~

T

q1*6

IS tg

08 o0SI o021 606 09 o0f o0 o0 o09- o0B- o0ZI- #0GI- 408I=
_ ] L _ 1l — ~ I r T ¢-O!
1 }

. b K T

. ‘¥ -

I'i ]

H J
g —=,.0l

_ Y7 Er—

m B/LE e v e N

| b/ ——— s

M QL e ]

\ 0 ]
8 ~3,.0l

2
Lhm = —

0= % i

;
o0l

m -1

— 500 R

' 450 LG £G .

— (o) % (G-4+P) "h (g+a+d) - h :

——S02 —=S02 .
0 Lo} 2,01

B

e adL - A DB
v




- B G} T e s & A A TR T T e
Okt vt it R el AT, T TR IR WY T A T TR Y
e PR 3 S T ST TS . TR T IR ST S T m

‘g s9TSuRm 5

J9LSM3IE SOVTXBA JOF 3Spe qUSIBIGS B A0J SUOTIOURJ (¥ = &)4 sug 3° qonpoad 8yl Q1’6 *314 |

.  a— !

W08l oS! o021 o068 009 o0f o0  o0f- o09- o08- o02i- oOSI- J08i-

110

|
t ] — MIOM M
F i 1 | | 1 IﬁJ! m_ i l _w T — x w
¥ _“ i F |
I _ .—. M j
e/ ——m——— "_ . __ ]
Y7L — | ; 3
/4 ——— by [ | 3,01
g /4 e i H . |
_° I T
6 I ]
IA
m ,

.- Ol

el
IMIMOO 4~
- =555 (g-2-37% 1o +u-sFPh
L 500 £ 500 .
D D .
—,0l




T Y

LR

WY R

T

Fe aactd

TR0 SBT3 11y e ot

1i1

<081 - oCGl

002l 006

009

LHLEE el Gt T o
laaiiiacing Sl imaralaliiy s v o Mt L UL R

lo.lﬁ
o0

‘g S9TIUB JI93SMaIg SNOTJIRA
JI0F LQ*Q ITSuUB PTIOS JO 3Fpam ' LOF SuOTEIUNJ (¥ + o)t au3 JOo 3onpoad 8yl

OOMI o8|

ooml oON_I oOm_l

r

]

P v e ¢ ¢ vt o 5 Se——
. .
p———— e 2

1

|
._

R

c.
(§- 4+ )

|

/L ————
Y7 - —

%

(g+4+0)

N\A\Vw

| ll_l_ljl‘ll 1 ‘llLllLl 1

|1|1_1_1 1.1

Tor+6 eandtg

o061~
¢-0l

,.0l

W]

0Ol

lllllL.LJ‘l

10l

Baca o S |




i
!
i

*5 SsT3us I93sSraag 2
SNOTJIBA J0J ¥Q*Q oTJu® PITOS Jo adpsm ® IO SUCTIIUNZ (x - &)4 3ys 3o gonpead syl 216 3xXn31g

| —
o081 o081 o021 06 09 0% o0 o0E~ 009~ 0B~ o02!- o0GI- -08I-

12

— ! T T [ 17 ™ T I7T T ¢ -0l
T . [ i
} _ | I
(! : : -
I _ | [ :
L} . ~ : . -
2/ === 1t A E
_ ‘' NIO_
B/UE —— s — L i) \ |
pIL —— — (Lo \ / \. f -
8/4 ———— Iy N _/ ) -
— 7
g . . .
‘n. S . . / A _Ql .
L0 = > A ~——— /V\ . | | -
t  — . .//. / .
— M - T et e . —— o — U
\ — 0t
9 s05 4 w
‘ D 250 440 “40 - w
. . = {g-4-D) "4 (g+£-D) "h i !
.Il.hwm S02 memoo i
01 |



113

STOTJIBA IO XQ°Q STBu® PITOS Jo s3panm

‘o SoTSuUR Js3SM3Ig

B I0J RUOTOUNZ (X + O)4 Yz Jo 3onpoad ayj

Tpr+6 amsTd

c0GI o021 005 o9 Le 206 = o03Zi- Nelo o 0Bl =
_ _ m S R . T * £-0l
i ! -
. 40,
’ _ _ : "" 7
i L i { 3
' 1 il :
: ! Sy T/ = =
i I —
S A \ . P4 ———
[ ! \ o Y
i - Pl 1
| : ! . /\ - 0 ]
. ) [ 8 E
: \\. / \ a .Ou.Mn .@ Cl
(\ ( 4\ . / = & 1-

¥ 505
2 - n.km.@}
o = {
BV 500 22500
3 D

Il]illi .

o0l

,ILJ [ D |

1 Ol




11k

‘5 SoTBuB J9IFMOIY SnOTIBA

I0J ¥g°( 9T8u® PTTOS JO dFpak B IO SUOTIOUZ (x - @)4 suy 3o qonpoad oY .mva.m axn3Ta
—p
o081 0G| «Q2l o086 02 0% Q) 008= o09- o06- o021 o0GI- L08! |O_
i ! | ) il A‘n_ TTT _— i { 1 | €~
i . .
' ““ | : : .
— - . B
T A A I -
i . . . +
! RN 2/h —mmmmm ]
£ - %“ , COBME —— ] o
! || vra — -
I 9/4 ——— |
HER . ° _
Le'Q = IW. m
.q_-o_
v //y N
\ w
—00!
Zlsn e veo. oo,
—2 = 7 {g-2-d) “h(g+2-9) #
€9 ¢moo c2 S02 1
D el 3
-3,0!

e e e ke e S o ST

—n - —




SN A ST Pon B g W Al T+ S S 0 S5 T N A e, AP S Lo e e

115

*§20BIANS OM3 §1T uo seouwpadwl QUaISIITIP U3 T aSps QUETBIGS B ICI SLOTIoUNI R

—9

‘P93 TWO USSq SBY JUBGSUCD SATIROTTATHTIWM ¥

U], BZ'H 240314

o081 o081 o02i | 006 09 oL o0 o0C- o09- o068- o02iI- o0GI- o,08l-
— _ T T T _ T _ _ ¥ _ m T ¢-Cl
“ e
# .
; i .
[ 1 .
\ # : 7
_. f q_ —z-01
I\ \ \ |
\\ // hhlﬁip\ / |
/ N /0 :
/ ~— =7 \ .
\\ \ =30
A\
/ =.
N
\
—_— N\
.|.|..oO_
bk =g Comrea-nr®h
o-fe ¢ (-p+-0) %A ]
4 - ¢ + l_
G3HOLVA 2 bra="g 'Q="¢ .
3,01

nd Loy




o o ittt O

116

e e e st ke

*go0BJ omM; §3T uo seduzpadwl JUSISIITP Y3 T4 93Jpo JyBTeILS B JOF SUOTITUNE A 3L 9276 siWdtd

-

oom._ oOmZ oON_ oom oO@ uOW oO ooml oow.l Omuml cGN«I OO@T. oOw_l _
r T T T _ r T T , ERHE ¢-O!
by w_ N
P .~
') 1 7
j i ;! ]
i ! ! -
% 3 E
A [l 3,01
co\ (=P} I _, T
\ -
\ o
\ .
\ —,-01
/.
v -
\
. // —
r/i{'IM/IM
b/L=p by —300!
o .V ..Rm.l
2/ 4 :=%p ¢ (b7 Vh A L4 /c_m Y_s02 = (u-P) ]
(pres-¢)h \ g+p /T P ]
.wv i * 4 s “
(p/is+#) %4 ﬁ L4 ono .N.Emeih+ﬂ; “
(b 2+P)2h  Nprusd i Y

',.»”‘-’m’!"ﬂ;‘“”—'r © m——————




117

*5008] OM3 s9T uo saouepaduy JUSIDII

tp UaTA 55ps 3USTBAGS B I0F SUWOTISUNG

o0E-

22°

o0GI-

QIS TS

08I~

M
ts
1}
i
1

I

8/4¢="8

——— S0

(o)

[ —————edat I

c
9 —Ss02

el

s (29
s

+ih??-ﬂ§
.%vi_ u.ﬁfﬂ;

{

|l|11 i1 1

|

'_lLlllJ__Ll

llllllll

-0l

Ol

o]

el

1Ol

- gibew
"




118

30°

OO

-30°

60° 90° 120°

180°
-180°

-150°

- €0° | RS Z120°

Figure 9.%a, The y(p + ) and ¥(p - ) functions in polar coordinates.
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Figure 9.3a, The ¥{(¢ + n) and V¥(p - x) functions in polar coordinates.
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Figure 9,3bl The y(p 4 «) and ¥(» - n) functions in polar coordinates.
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Figure 9.3dl The V(p + ) and ¥(¢ - 5) functions in polar cocrdinates,
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Figure 9.3f The y(¢® + =) and ¥ (¢ - x) functions in polar coordinates.
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Phenomena, " Usperhi Fizichexikh Nauk, 1959, Voi 69, Nr 5, pp
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of an Arbitraxy Wedpge - Part I1, " Akusticheskiy Zhkurnal, 1955,

Vol l, Nr 3, pp 2Z6-2 4.
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The following paper was presented at the All-Unicn Conference '
on Acoustics, June 24-29, 1957, in Moscaw; Malyuzhinets, G.D.,
"Emission and Diffraction of Sound, "

The following paper was presented at the Fourth All-Unton Acoustics
Conf, May 26 to June 4, 1958, in Moscow: Malyuzhinets, G. D.,
"Transversal Amplitude Diffusion in Connection with the Refraction,
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(3) Malyuzhinets, G.D,, "Convegsion Formula for Sommericld Integral,
Doklady Akademii Nauk S. 5.8, R., 1958, Vol U8, Nr 6, pp 1099-1102,
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G.D. MALYUZHEINETS -‘
Moscow, Akusticheskiy Zhurmal, No 4, 1969, pp 629-630

Excerpts: Prei Georgiy Danilovich Maiyuzhinetz, Doctor of
Physicomathematical Sciences, died suddenly on 14 August 1569
at the age of 59, Malyuzhinets was a prorminent Soviet specialist ,
i acoustics and theory of wave diffraction, member of the Communist ‘ ;
Party of ‘the Soviet Union, and head of the laboratory of the Acoustics

Institute of the USSR Academy of Scicnces, ...

: Malyuzhinets was vary dctivé in directing graduate students and

in piving lectures both in schools (Moscow State University, Moscow
Physicotechrical Institute and in rescarch institutes, Ilis comprehen-
sive approach to scientific problems plus his great intuition in physics ‘
attracted the'youth to hira. Many young scientists did their disserta- i
tions under his direction or with his constant advice,

Malyuzhincts atiached excentional importance to the training of
specialises in diffraction theory. Ile prepared and gave an original
v course on diifragtion theory for students in the Moscow Physico-
technical Institute. He strove to sct up diffraction theory as a
speciality in the Mechanics and Mathematics Faculties of universities,

for e was completely aware of the increasingly important role

played Ly present-day mathematical methods in solving the ;
problems of wave diffractivn. As an active proponent of more
mathematical training forscicntists concerned with wave
diifraction theory, Malvuzhinets spared no efforts to master for
himsell new mathematical methods and concepts
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